Yoo Jin, Won You-Yeon
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America.
Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, United States of America.
ACS Biomater Sci Eng. 2020 Nov 9;6(11):6053-6062. doi: 10.1021/acsbiomaterials.0c01228. Epub 2020 Oct 9.
Poly(lactic--glycolic acid) (PLGA) is the most prevalent polymer drug delivery vehicle in use today. There are about 20 commercialized drug products in which PLGA is used as an excipient. In more than half of these formulations, PLGA is used in the form of microparticles (with sizes in the range between 60 nm and 100 μm). The primary role of PLGA is to control the kinetics of drug release toward achieving sustained release of the drug. Unfortunately, most drug-loaded PLGA microparticles exhibit a common drawback: an initial uncontrolled burst of the drug. After 30 years of utilization of PLGA in controlled drug delivery systems, this initial burst drug release still remains an unresolved challenge. In this Review, we present a summary of the proposed mechanisms responsible for this phenomenon and the known factors affecting the burst release process. Also, we discuss examples of recent efforts made to reduce the initial burst release of the drug from PLGA particles.
聚乳酸-乙醇酸共聚物(PLGA)是当今使用最为广泛的聚合物药物递送载体。目前约有20种商业化药品将PLGA用作辅料。在超过半数的这些制剂中,PLGA以微粒形式使用(粒径范围在60纳米至100微米之间)。PLGA的主要作用是控制药物释放动力学,以实现药物的持续释放。不幸的是,大多数载药PLGA微粒存在一个共同缺点:药物的初始无控突释。在PLGA用于控释药物系统30年后,这种初始突释药物释放仍然是一个未解决的挑战。在本综述中,我们总结了针对这一现象提出的作用机制以及影响突释过程的已知因素。此外,我们还讨论了近期为减少药物从PLGA颗粒中的初始突释所做努力的实例。