文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co.

作者信息

Raval Yash S, Samstag Anna, Taylor Cedric, Huang Guohui, Mefford Olin Thompson, Tzeng Tzuen-Rong Jeremy

机构信息

Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.

Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.

出版信息

Nanomaterials (Basel). 2021 Sep 22;11(10):2465. doi: 10.3390/nano11102465.


DOI:10.3390/nano11102465
PMID:34684906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8537094/
Abstract

We have previously demonstrated that iron oxide nanoparticles with dopamine-anchored heterobifunctional polyethylene oxide (PEO) polymer, namely PEO-IONPs, and bio-functionalized with sialic-acid specific glycoconjugate moiety (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp), namely GM3-IONPs, can be effectively used as antibacterial agents against target . In this study, we evaluated the biocompatibility of PEO-IONPs and GM3-IONPs in a normal human colon cell line CCD-18Co via measuring cell proliferation, membrane integrity, and intracellular adenosine triphosphate (ATP), glutathione GSH, dihydrorhodamine (DHR) 123, and caspase 3/7 levels. PEO-IONPs caused a significant decrease in cell viability at concentrations above 100 μg/mL whereas GM3-IONPs did not cause a significant decrease in cell viability even at the highest dose of 500 μg/mL. The ATP synthase activity of CCD-18Co was significantly diminished in the presence of PEO-IONPs but not GM3-IONPs. PEO-IONPs also compromised the membrane integrity of CCD-18Co. In contrast, cells exposed to GM3-IONPs showed significantly different cell morphology, but with no apparent membrane damage. The interaction of PEO-IONPs or GM3-IONPs with CCD-18Co resulted in a substantial decrease in the intracellular GSH levels in a time- and concentration-dependent manner. Conversely, levels of DHR-123 increased with IONP concentrations. Levels of caspase 3/7 proteins were found to be significantly elevated in cells exposed to PEO-IONPs. Based on the results, we assume GM3-IONPs to be biocompatible with CCD-18Co and could be further evaluated for selective killing of pathogens in vivo.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/4e8a01c33d1e/nanomaterials-11-02465-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/99c2189b4b53/nanomaterials-11-02465-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/f157f4642c1c/nanomaterials-11-02465-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/5f87de1055a9/nanomaterials-11-02465-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/c9930a3678e0/nanomaterials-11-02465-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/d323b1470a31/nanomaterials-11-02465-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/b104a44a61c9/nanomaterials-11-02465-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/2e765a90e470/nanomaterials-11-02465-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/4e8a01c33d1e/nanomaterials-11-02465-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/99c2189b4b53/nanomaterials-11-02465-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/f157f4642c1c/nanomaterials-11-02465-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/5f87de1055a9/nanomaterials-11-02465-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/c9930a3678e0/nanomaterials-11-02465-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/d323b1470a31/nanomaterials-11-02465-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/b104a44a61c9/nanomaterials-11-02465-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/2e765a90e470/nanomaterials-11-02465-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/8537094/4e8a01c33d1e/nanomaterials-11-02465-g008.jpg

相似文献

[1]
Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co.

Nanomaterials (Basel). 2021-9-22

[2]
Synthesis and application of glycoconjugate-functionalized magnetic nanoparticles as potent anti-adhesion agents for reducing enterotoxigenic Escherichia coli infections.

Nanoscale. 2015-5-14

[3]
Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.

Int J Nanomedicine. 2013-3-6

[4]
Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties.

Int J Mol Sci. 2023-11-2

[5]
Biocompatible polysiloxane-containing diblock copolymer PEO-b-PgammaMPS for coating magnetic nanoparticles.

ACS Appl Mater Interfaces. 2009-10

[6]
Zinc L-Carnosine Protects CCD-18co Cells from L-Buthionine Sulfoximine-Induced Oxidative Stress via the Induction of Metallothionein and Superoxide Dismutase 1 Expression.

Biol Trace Elem Res. 2020-12

[7]
Charge-Modulated Synthesis of Highly Stable Iron Oxide Nanoparticles for In Vitro and In Vivo Toxicity Evaluation.

Nanomaterials (Basel). 2021-11-14

[8]
Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.

Arch Toxicol. 2015-3

[9]
Accumulation of iron oxide nanoparticles by cultured primary neurons.

Neurochem Int. 2015-2

[10]
Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer.

Int J Nanomedicine. 2013-10-2

引用本文的文献

[1]
Toxicity and magnetometry evaluation of the uptake of core-shell maghemite-silica nanoparticles by neuroblastoma cells.

R Soc Open Sci. 2024-6-19

本文引用的文献

[1]
In vitro studies of heparin-coated magnetic nanoparticles for use in the treatment of neointimal hyperplasia.

Nanomedicine. 2018-3-8

[2]
Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications.

Sci Rep. 2017-4-10

[3]
Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells.

Toxicol In Vitro. 2017-6

[4]
Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption.

Sci Rep. 2016-9-20

[5]
Size-Dependent Photodynamic Anticancer Activity of Biocompatible Multifunctional Magnetic Submicron Particles in Prostate Cancer Cells.

Molecules. 2016-9-6

[6]
Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.

Nanomedicine (Lond). 2016-7

[7]
Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity.

J Appl Toxicol. 2016-10

[8]
The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line.

Toxicol Lett. 2016-5-13

[9]
In vivo degeneration and the fate of inorganic nanoparticles.

Chem Soc Rev. 2016-5-3

[10]
Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.

Nanomedicine. 2016-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索