Wei Yuehua, Wei Zhenhua, Zheng Xiaoming, Liu Jinxin, Chen Yangbo, Su Yue, Luo Wei, Peng Gang, Huang Han, Cai Weiwei, Deng Chuyun, Zhang Xueao, Qin Shiqiao
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
College of Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
Nanomaterials (Basel). 2021 Oct 17;11(10):2751. doi: 10.3390/nano11102751.
The coupling strength between two-dimensional (2D) materials and substrate plays a vital role on thermal transport properties of 2D materials. Here we systematically investigate the influence of vacuum thermal annealing on the temperature-dependence of in-plane Raman phonon modes in monolayer graphene supported on silicon dioxide substrate via Raman spectroscopy. Intriguingly, raising the thermal annealing temperature can significantly enlarge the temperature coefficient of supported monolayer graphene. The derived temperature coefficient of G band remains mostly unchanged with thermal annealing temperature below 473 K, while it increases from -0.030 cm/K to -0.0602 cm/K with thermal annealing temperature ranging from 473 K to 773 K, suggesting the great impact of thermal annealing on thermal transport in supported monolayer graphene. Such an impact might reveal the vital role of coupling strength on phonon scattering and on the thermal transport property of supported monolayer graphene. To further interpret the thermal annealing mechanism, the compressive stress in supported monolayer graphene, which is closely related to coupling strength and is studied through the temperature-dependent Raman spectra. It is found that the variation tendency for compressive stress induced by thermal annealing is the same as that for temperature coefficient, implying the intense connection between compressive stress and thermal transport. Actually, 773 K thermal annealing can result in 2.02 GPa compressive stress on supported monolayer graphene due to the lattice mismatch of graphene and substrate. This study proposes thermal annealing as a feasible path to modulate the thermal transport in supported graphene and to design future graphene-based devices.
二维(2D)材料与衬底之间的耦合强度对二维材料的热输运性质起着至关重要的作用。在此,我们通过拉曼光谱系统地研究了真空热退火对二氧化硅衬底上支撑的单层石墨烯面内拉曼声子模式温度依赖性的影响。有趣的是,提高热退火温度可显著增大支撑的单层石墨烯的温度系数。当热退火温度低于473 K时,G带的导出温度系数基本保持不变,而当热退火温度在473 K至773 K范围内时,其从 -0.030 cm/K增加到 -0.0602 cm/K,这表明热退火对支撑的单层石墨烯中的热输运有很大影响。这种影响可能揭示了耦合强度在声子散射以及支撑的单层石墨烯热输运性质方面的关键作用。为了进一步解释热退火机制,通过与温度相关的拉曼光谱研究了支撑的单层石墨烯中的压缩应力,该应力与耦合强度密切相关。发现热退火引起的压缩应力变化趋势与温度系数的变化趋势相同,这意味着压缩应力与热输运之间存在紧密联系。实际上,由于石墨烯与衬底的晶格失配,773 K的热退火会在支撑的单层石墨烯上产生高达2.02 GPa的压缩应力。本研究提出热退火是调节支撑石墨烯中的热输运以及设计未来基于石墨烯的器件的可行途径。