文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Basic Quality Controls Used in Skin Tissue Engineering.

作者信息

Linares-Gonzalez Laura, Rodenas-Herranz Teresa, Campos Fernando, Ruiz-Villaverde Ricardo, Carriel Víctor

机构信息

Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain.

Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain.

出版信息

Life (Basel). 2021 Sep 30;11(10):1033. doi: 10.3390/life11101033.


DOI:10.3390/life11101033
PMID:34685402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8541591/
Abstract

Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/52f0ae358f1a/life-11-01033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/9cfa07766357/life-11-01033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/6258c3f020d8/life-11-01033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/986c65002af5/life-11-01033-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/4f341e85f8ea/life-11-01033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/c1966163d0f1/life-11-01033-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/52f0ae358f1a/life-11-01033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/9cfa07766357/life-11-01033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/6258c3f020d8/life-11-01033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/986c65002af5/life-11-01033-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/4f341e85f8ea/life-11-01033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/c1966163d0f1/life-11-01033-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1219/8541591/52f0ae358f1a/life-11-01033-g006.jpg

相似文献

[1]
Basic Quality Controls Used in Skin Tissue Engineering.

Life (Basel). 2021-9-30

[2]
Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo.

Stem Cell Res Ther. 2020-9-18

[3]
Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries.

NPJ Regen Med. 2021-6-17

[4]
Epidermolysis Bullosa: A Review of the Tissue-Engineered Skin Substitutes Used to Treat Wounds.

Mol Diagn Ther. 2022-11

[5]
[Heart valve and myocardial tissue engineering].

Herz. 2010-8

[6]
Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: Preclinical comparative in vivo study of wound healing.

J Eur Acad Dermatol Venereol. 2020-10

[7]
Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.

J Vis Exp. 2013-5-21

[8]
Tissue engineering in urology.

Curr Opin Urol. 2001-5

[9]
[Neovascularisation and free microsurgical transfer of cartilage-engineered constructs].

HNO. 2011-3

[10]
[Regenerative medicine: stem cells, cellular and matricial interactions in the reconstruction of skin and cornea by tissue engineering].

Pathol Biol (Paris). 2009-6

引用本文的文献

[1]
Histological and Histochemical Methods for the Evaluation of Tissue Engineered Skin Substitutes.

Methods Mol Biol. 2025

[2]
Polysaccharides and Peptides With Wound Healing Activity From Bacteria and Fungi.

J Basic Microbiol. 2024-12

[3]
A review of the current state of natural biomaterials in wound healing applications.

Front Bioeng Biotechnol. 2024-3-27

[4]
Expression of Basement Membrane Molecules by Wharton Jelly Stem Cells (WJSC) in Full-Term Human Umbilical Cords, Cell Cultures and Microtissues.

Cells. 2023-2-15

[5]
In-process monitoring of a tissue-engineered oral mucosa fabricated on a micropatterned collagen scaffold: use of optical coherence tomography for quality control.

Heliyon. 2022-11-8

[6]
Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues.

Front Bioeng Biotechnol. 2022-8-23

本文引用的文献

[1]
In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications.

Mater Sci Eng C Mater Biol Appl. 2021-1

[2]
Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo.

Stem Cell Res Ther. 2020-9-18

[3]
Rapid printing of bio-inspired 3D tissue constructs for skin regeneration.

Biomaterials. 2020-11

[4]
Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin.

Biomolecules. 2020-8-11

[5]
Improving the regenerative microenvironment during tendon healing by using nanostructured fibrin/agarose-based hydrogels in a rat Achilles tendon injury model.

Bone Joint J. 2020-8

[6]
3D biofabrication for soft tissue and cartilage engineering.

Med Eng Phys. 2020-8

[7]
Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering.

Biofabrication. 2021-4-9

[8]
Characterization of the Cellular Reaction to a Collagen-Based Matrix: An In Vivo Histological and Histomorphometrical Analysis.

Materials (Basel). 2020-6-16

[9]
Novel morphological multi-scale evaluation system for quality assessment of decellularized liver scaffolds.

J Tissue Eng. 2020-5-27

[10]
Detergent-based decellularized peripheral nerve allografts: An in vivo preclinical study in the rat sciatic nerve injury model.

J Tissue Eng Regen Med. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索