Suppr超能文献

BCEPS:一个用于预测线性 B 细胞表位的网络服务器,具有增强的免疫原性和交叉反应性。

BCEPS: A Web Server to Predict Linear B Cell Epitopes with Enhanced Immunogenicity and Cross-Reactivity.

机构信息

Laboratory of Immunomedicine, Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain.

出版信息

Cells. 2021 Oct 14;10(10):2744. doi: 10.3390/cells10102744.

Abstract

Prediction of linear B cell epitopes is of interest for the production of antigen-specific antibodies and the design of peptide-based vaccines. Here, we present BCEPS, a web server for predicting linear B cell epitopes tailored to select epitopes that are immunogenic and capable of inducing cross-reactive antibodies with native antigens. BCEPS implements various machine learning models trained on a dataset including 555 linearized conformational B cell epitopes that were mined from antibody-antigen protein structures. The best performing model, based on a support vector machine, reached an accuracy of 75.38% ± 5.02. In an independent dataset consisting of B cell epitopes retrieved from the Immune Epitope Database (IEDB), this model achieved an accuracy of 67.05%. In BCEPS, predicted epitopes can be ranked according to properties such as flexibility, accessibility and hydrophilicity, and with regard to immunogenicity, as judged by their predicted presentation by MHC II molecules. BCEPS also detects if predicted epitopes are located in ectodomains of membrane proteins and if they possess N-glycosylation sites hindering antibody recognition. Finally, we exemplified the use of BCEPS in the SARS-CoV-2 Spike protein, showing that it can identify B cell epitopes targeted by neutralizing antibodies.

摘要

线性 B 细胞表位的预测对于产生抗原特异性抗体和设计基于肽的疫苗很有意义。在这里,我们介绍了 BCEPS,这是一个用于预测线性 B 细胞表位的网络服务器,旨在选择具有免疫原性和能够诱导与天然抗原发生交叉反应的抗体的表位。BCEPS 实现了各种机器学习模型,这些模型是在包括从抗体-抗原蛋白质结构中挖掘的 555 个线性构象 B 细胞表位的数据集上进行训练的。基于支持向量机的最佳模型的准确率达到了 75.38%±5.02。在由免疫表位数据库 (IEDB) 中检索到的 B 细胞表位组成的独立数据集上,该模型的准确率为 67.05%。在 BCEPS 中,预测的表位可以根据灵活性、可及性和亲水性等特性以及根据 MHC II 分子预测的呈递来进行免疫原性排序。BCEPS 还可以检测预测的表位是否位于膜蛋白的胞外结构域中,以及它们是否具有阻碍抗体识别的 N-糖基化位点。最后,我们举例说明了 BCEPS 在 SARS-CoV-2 Spike 蛋白中的应用,表明它可以识别中和抗体靶向的 B 细胞表位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc0/8534968/b1c9d173ded0/cells-10-02744-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验