Suppr超能文献

鉴定 B 细胞表位的多视角和挑战。

Multi-perspectives and challenges in identifying B-cell epitopes.

机构信息

Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.

出版信息

Protein Sci. 2023 Nov;32(11):e4785. doi: 10.1002/pro.4785.

Abstract

The identification of B-cell epitopes (BCEs) in antigens is a crucial step in developing recombinant vaccines or immunotherapies for various diseases. Over the past four decades, numerous in silico methods have been developed for predicting BCEs. However, existing reviews have only covered specific aspects, such as the progress in predicting conformational or linear BCEs. Therefore, in this paper, we have undertaken a systematic approach to provide a comprehensive review covering all aspects associated with the identification of BCEs. First, we have covered the experimental techniques developed over the years for identifying linear and conformational epitopes, including the limitations and challenges associated with these techniques. Second, we have briefly described the historical perspectives and resources that maintain experimentally validated information on BCEs. Third, we have extensively reviewed the computational methods developed for predicting conformational BCEs from the structure of the antigen, as well as the methods for predicting conformational epitopes from the sequence. Fourth, we have systematically reviewed the in silico methods developed in the last four decades for predicting linear or continuous BCEs. Finally, we have discussed the overall challenge of identifying continuous or conformational BCEs. In this review, we only listed major computational resources; a complete list with the URL is available from the BCinfo website (https://webs.iiitd.edu.in/raghava/bcinfo/).

摘要

鉴定抗原中的 B 细胞表位(BCEs)是开发用于治疗各种疾病的重组疫苗或免疫疗法的关键步骤。在过去的四十年中,已经开发出了许多用于预测 BCEs 的计算方法。然而,现有的综述仅涵盖了特定方面,如预测构象或线性 BCEs 的进展。因此,在本文中,我们采用系统的方法提供了一个全面的综述,涵盖了与鉴定 BCEs 相关的所有方面。首先,我们介绍了多年来用于鉴定线性和构象表位的实验技术,包括这些技术的局限性和挑战。其次,我们简要描述了历史观点和资源,这些资源维护着 BCEs 的实验验证信息。第三,我们广泛综述了从抗原结构预测构象 BCEs 的计算方法,以及从序列预测构象表位的方法。第四,我们系统地综述了过去四十年中开发的用于预测线性或连续 BCEs 的计算方法。最后,我们讨论了鉴定连续或构象 BCEs 的整体挑战。在本综述中,我们仅列出了主要的计算资源;完整的列表及 URL 可在 BCinfo 网站(https://webs.iiitd.edu.in/raghava/bcinfo/)上找到。

相似文献

引用本文的文献

本文引用的文献

9
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验