Suppr超能文献

异常的 RNA 甲基化触发烷基化修复复合物的募集。

Aberrant RNA methylation triggers recruitment of an alkylation repair complex.

机构信息

Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.

Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.

出版信息

Mol Cell. 2021 Oct 21;81(20):4228-4242.e8. doi: 10.1016/j.molcel.2021.09.024.

Abstract

Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.

摘要

中心体基因毒性反应是其能够感知高度特异性信号,激活适当的修复反应的能力。我们之前的报告表明,ASCC-ALKBH3 修复途径的激活对人类细胞中的烷化损伤具有高度特异性。然而,该途径选择性的机制基础并不明显。在这里,我们证明 RNA 而不是 DNA 烷化是这个过程的起始信号。异常甲基化的 RNA 足以招募 ASCC,而 RNA 脱烷基酶在化学烷化过程中抑制 ASCC 的募集。反过来,在烷化损伤期间,由 E3 泛素连接酶 RNF113A 介导的 ASCC 的募集抑制转录和 R 环形成。我们进一步表明,在体外,经烷基化的前体 RNA 足以激活 RNF113A E3 连接酶,其方式依赖于其 RNA 结合 Zn 指结构域。总之,我们的工作确定了 RNA 损伤在引发对遗传毒物的特定反应中的意外作用。

相似文献

1
Aberrant RNA methylation triggers recruitment of an alkylation repair complex.
Mol Cell. 2021 Oct 21;81(20):4228-4242.e8. doi: 10.1016/j.molcel.2021.09.024.
2
A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair.
Nature. 2017 Nov 16;551(7680):389-393. doi: 10.1038/nature24484. Epub 2017 Nov 8.
3
4
Intersections between transcription-coupled repair and alkylation damage reversal.
DNA Repair (Amst). 2019 Sep;81:102663. doi: 10.1016/j.dnarep.2019.102663. Epub 2019 Jul 8.
5
The ASCC2 CUE domain in the ALKBH3-ASCC DNA repair complex recognizes adjacent ubiquitins in K63-linked polyubiquitin.
J Biol Chem. 2022 Feb;298(2):101545. doi: 10.1016/j.jbc.2021.101545. Epub 2021 Dec 28.
7
CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer.
BMC Cancer. 2017 Jul 5;17(1):469. doi: 10.1186/s12885-017-3453-8.
8
Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase.
Nucleic Acids Res. 2019 Dec 16;47(22):11729-11745. doi: 10.1093/nar/gkz938.
9
The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations.
Nat Commun. 2020 Nov 2;11(1):5535. doi: 10.1038/s41467-020-19221-x.

引用本文的文献

2
The PARP1-EXD2 axis orchestrates R-loop resolution to safeguard genome stability.
Nat Chem Biol. 2025 Jun 27. doi: 10.1038/s41589-025-01952-x.
4
The Secret Life of N-methyladenosine: A Review on its Regulatory Functions.
J Mol Biol. 2025 Aug 15;437(16):169099. doi: 10.1016/j.jmb.2025.169099. Epub 2025 Mar 24.
5
RNA damage and its implications in genome stability.
DNA Repair (Amst). 2025 Mar;147:103821. doi: 10.1016/j.dnarep.2025.103821. Epub 2025 Mar 1.
6
YTHDC1 cooperates with the THO complex to prevent RNA-damage-induced DNA breaks.
Mol Cell. 2025 Mar 20;85(6):1085-1100.e9. doi: 10.1016/j.molcel.2025.02.003. Epub 2025 Mar 3.
8
Epitranscriptome in action: RNA modifications in the DNA damage response.
Mol Cell. 2024 Oct 3;84(19):3610-3626. doi: 10.1016/j.molcel.2024.09.003.
9
Small Cell Lung Cancer-An Update on Chemotherapy Resistance.
Curr Treat Options Oncol. 2024 Aug;25(8):1112-1123. doi: 10.1007/s11864-024-01245-w. Epub 2024 Jul 27.
10
Effect of RNF113A deficiency on oxidative stress-induced NRF2 pathway.
Anim Cells Syst (Seoul). 2024 May 11;28(1):261-271. doi: 10.1080/19768354.2024.2349758. eCollection 2024.

本文引用的文献

1
TDP-43 dysfunction results in R-loop accumulation and DNA replication defects.
J Cell Sci. 2020 Oct 30;133(20):jcs244129. doi: 10.1242/jcs.244129.
2
The ASC-1 Complex Disassembles Collided Ribosomes.
Mol Cell. 2020 Aug 20;79(4):603-614.e8. doi: 10.1016/j.molcel.2020.06.006. Epub 2020 Jun 23.
3
MGMT Status as a Clinical Biomarker in Glioblastoma.
Trends Cancer. 2020 May;6(5):380-391. doi: 10.1016/j.trecan.2020.02.010. Epub 2020 Mar 27.
4
RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1.
Nat Struct Mol Biol. 2020 Apr;27(4):323-332. doi: 10.1038/s41594-020-0393-9. Epub 2020 Mar 23.
5
The roles of RNA in DNA double-strand break repair.
Br J Cancer. 2020 Mar;122(5):613-623. doi: 10.1038/s41416-019-0624-1. Epub 2020 Jan 2.
6
Oxidation and alkylation stresses activate ribosome-quality control.
Nat Commun. 2019 Dec 9;10(1):5611. doi: 10.1038/s41467-019-13579-3.
7
Intersections between transcription-coupled repair and alkylation damage reversal.
DNA Repair (Amst). 2019 Sep;81:102663. doi: 10.1016/j.dnarep.2019.102663. Epub 2019 Jul 8.
8
Transcriptome-wide Mapping of Internal N-Methylguanosine Methylome in Mammalian mRNA.
Mol Cell. 2019 Jun 20;74(6):1304-1316.e8. doi: 10.1016/j.molcel.2019.03.036. Epub 2019 Apr 25.
9
Post-translational regulation of ubiquitin signaling.
J Cell Biol. 2019 Jun 3;218(6):1776-1786. doi: 10.1083/jcb.201902074. Epub 2019 Apr 18.
10
Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function.
J Cell Biol. 2019 Feb 4;218(2):422-432. doi: 10.1083/jcb.201803003. Epub 2019 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验