Chen Hao, Ferguson Cole J, Mitchell Dylan C, Risch Isabel, Titus Amanda, Paulo Joao A, Hwang Andrew, Beck Loren K, Lin Tsen-Hsuan, Gu Wei, Song Sheng-Kwei, Yuede Carla M, Yano Hiroko, Griffith Obi L, Griffith Malachi, Gygi Steven P, Bonni Azad, Kim Albert H
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
Cell Rep. 2025 Feb 25;44(2):115231. doi: 10.1016/j.celrep.2025.115231. Epub 2025 Jan 23.
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss. Strikingly, USP7 deletion perturbs the synaptic proteome and dendritic spinogenesis independent of p53. Integrated proteomics and biochemical analyses identify the RNA splicing factor Ppil4 as a key substrate of USP7. Ppil4 knockdown phenocopies the effect of USP7 loss on dendritic spines. Accordingly, USP7 loss disrupts splicing of synaptic genes. These findings reveal that USP7-Ppil4 signaling regulates neuronal connectivity in the developing brain with implications for our understanding of HAFOUS pathogenesis and other neurodevelopmental disorders.
去泛素化酶USP7的突变或缺失会导致郝-方丹综合征(HAFOUS),其特征为语言发育迟缓、智力障碍和攻击性行为,这凸显了USP7在神经系统中重要的未知作用。在此,我们有条件地删除小鼠前脑谷氨酸能神经元中的USP7,引发了与疾病相关的表型,包括感觉运动缺陷、认知障碍和攻击性行为。尽管USP7缺失会诱导p53依赖性神经元凋亡,但在p53缺失后,USP7条件性敲除小鼠的大多数行为异常仍然存在。令人惊讶的是,USP7缺失会独立于p53干扰突触蛋白质组和树突棘形成。综合蛋白质组学和生化分析确定RNA剪接因子Ppil4是USP7的关键底物。敲低Ppil4模拟了USP7缺失对树突棘的影响。因此,USP7缺失会破坏突触基因的剪接。这些发现表明,USP7-Ppil4信号通路调节发育中大脑的神经元连接,这对我们理解HAFOUS发病机制和其他神经发育障碍具有重要意义。