Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010.
College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2104569118.
Motor control requires a coordinated ensemble of spatiotemporally precise neural oscillations across a distributed motor network, particularly in the beta range (15 to 30 Hz) to successfully plan and execute volitional actions. While substantial evidence implicates beta activity as critical to motor control, the molecular processes supporting these microcircuits and their inherent oscillatory dynamics remain poorly understood. Among these processes are mitochondrial integrity and the associated redox environments, although their direct impact on human neurophysiological function is unknown. Herein, 40 healthy adults completed a motor sequence paradigm during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain using a beamformer to evaluate beta oscillatory profiles during distinct phases of motor control (i.e., planning and execution) and subsequent behavior. To comprehensively quantify features of the mitochondrial redox environment, we used state-of-the-art systems biology approaches including Seahorse Analyzer to assess mitochondrial respiration and electron paramagnetic resonance spectroscopy to measure superoxide levels in whole blood as well as antioxidant activity assays. Using structural equation modeling, we tested the relationship between mitochondrial function and sensorimotor brain-behavior dynamics through alterations in the redox environment (e.g., generation of superoxide and alteration in antioxidant defenses). Our results indicated that superoxide-sensitive but not hydrogen peroxide-sensitive features of the redox environment had direct and mediating effects on the bioenergetic-neural pathways serving motor performance in healthy adults. Importantly, our results suggest that alterations in the redox environment may directly impact behavior above and beyond mitochondrial respiratory capacities alone and further may be effective targets for age- and disease-related declines in cognitive-motor function.
运动控制需要协调分布的运动网络中的时空精确神经振荡的合奏,特别是在β频带(15 到 30 赫兹),以成功规划和执行自愿动作。虽然大量证据表明β活动对运动控制至关重要,但支持这些微电路及其固有振荡动力学的分子过程仍知之甚少。其中包括线粒体的完整性和相关的氧化还原环境,尽管它们对人类神经生理功能的直接影响尚不清楚。在此,40 名健康成年人在脑磁图(MEG)期间完成了运动序列范式。使用波束形成器在时频域对 MEG 数据进行成像,以评估运动控制(即规划和执行)不同阶段和随后行为期间的β振荡曲线。为了全面量化线粒体氧化还原环境的特征,我们使用了最先进的系统生物学方法,包括 Seahorse 分析仪来评估线粒体呼吸,以及电子顺磁共振波谱来测量全血中的超氧化物水平和抗氧化剂活性测定。使用结构方程模型,我们通过改变氧化还原环境(例如,超氧化物的产生和抗氧化防御的改变)来测试线粒体功能与感觉运动大脑行为动力学之间的关系。我们的结果表明,氧化还原环境中超氧化物敏感但过氧化氢不敏感的特征对健康成年人的运动表现的生物能神经通路具有直接和介导作用。重要的是,我们的结果表明,氧化还原环境的改变可能直接影响行为,而不仅仅是线粒体呼吸能力,并且可能是与年龄和疾病相关的认知运动功能下降的有效靶点。
Proc Natl Acad Sci U S A. 2021-10-26
Free Radic Biol Med. 2024-2-20
Brain Behav Immun. 2023-1
Hum Brain Mapp. 2020-2-1
Trends Cogn Sci. 2016-5
Neuroimage Clin. 2019-8-7
J Neurophysiol. 2018-7-1
J Neuroimmune Pharmacol. 2025-8-19
J Neuroimmune Pharmacol. 2025-6-6
Free Radic Biol Med. 2024-2-20
Hum Brain Mapp. 2023-12-15
Cereb Cortex. 2020-11-3
Hum Brain Mapp. 2020-2-1
JCI Insight. 2019-6-20
Oxid Med Cell Longev. 2017-10-2