Brinkman Loek, Stolk Arjen, Dijkerman H Chris, de Lange Floris P, Toni Ivan
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands and
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands and.
J Neurosci. 2014 Oct 29;34(44):14783-92. doi: 10.1523/JNEUROSCI.2039-14.2014.
Rhythmic neural activity within the alpha (8-12 Hz) and beta (15-25 Hz) frequency bands is modulated during actual and imagined movements. Changes in these rhythms provide a mechanism to select relevant neuronal populations, although the relative contributions of these rhythms remain unclear. Here we use MEG to investigate changes in oscillatory power while healthy human participants imagined grasping a cylinder oriented at different angles. This paradigm allowed us to study the neural signals involved in the simulation of a movement in the absence of signals related to motor execution and sensory reafference. Movement selection demands were manipulated by exploiting the fact that some object orientations evoke consistent grasping movements, whereas others are compatible with both overhand and underhand grasping. By modulating task demands, we show a functional dissociation of the alpha- and beta-band rhythms. As movement selection demands increased, alpha-band oscillatory power increased in the sensorimotor cortex ipsilateral to the arm used for imagery, whereas beta-band power concurrently decreased in the contralateral sensorimotor cortex. The same pattern emerged when motor imagery trials were compared with a control condition, providing converging evidence for the functional dissociation of the two rhythms. These observations call for a re-evaluation of the role of sensorimotor rhythms. We propose that neural oscillations in the alpha-band mediate the allocation of computational resources by disengaging task-irrelevant cortical regions. In contrast, the reduction of neural oscillations in the beta-band is directly related to the disinhibition of neuronal populations involved in the computations of movement parameters.
在实际运动和想象运动过程中,α(8 - 12赫兹)和β(15 - 25赫兹)频段内的节律性神经活动会受到调制。这些节律的变化提供了一种选择相关神经元群体的机制,尽管这些节律的相对作用仍不清楚。在这里,我们使用脑磁图(MEG)来研究健康人类参与者想象抓取不同角度放置的圆柱体时振荡功率的变化。这种范式使我们能够在没有与运动执行和感觉反馈相关信号的情况下,研究模拟运动所涉及的神经信号。通过利用某些物体方向会引发一致的抓握动作,而其他方向则与上手抓握和下手抓握都兼容这一事实,来操纵运动选择需求。通过调节任务需求,我们展示了α和β频段节律的功能分离。随着运动选择需求的增加,用于想象的手臂同侧感觉运动皮层中的α频段振荡功率增加,而对侧感觉运动皮层中的β频段功率同时降低。当将运动想象试验与对照条件进行比较时,出现了相同的模式,为两种节律的功能分离提供了趋同的证据。这些观察结果要求重新评估感觉运动节律的作用。我们提出,α频段的神经振荡通过脱离与任务无关的皮层区域来介导计算资源的分配。相比之下,β频段神经振荡的减少与参与运动参数计算的神经元群体的去抑制直接相关。