Suppr超能文献

北太平洋副极区东北海域暖温异常下的原核生物响应

Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters.

机构信息

Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.

HADAL and Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.

出版信息

Commun Biol. 2021 Oct 22;4(1):1217. doi: 10.1038/s42003-021-02731-9.

Abstract

Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.

摘要

最近关于海洋热浪的研究描述了水温异常导致食物网结构变化、浮游生物动态变化、生物多样性丧失以及动植物死亡率增加的情况。然而,关于水温异常如何影响栖息在海洋中的原核生物(细菌和古菌)的信息却很少。考虑到它们在驱动影响海洋生产力和气候系统的主要生物地球化学通量方面的重要作用,这是一个不容忽视的遗漏。在这里,我们提出了一项关于东北亚北极太平洋大规模暖水表面异常(俗称“Blob”)对原核生物群落组成影响的时变研究。多元统计分析确定了显著的深度和季节依赖性趋势,这些趋势在 Blob 期间更加明显。此外,网络和指标分析确定了特定原核生物组合的变化,从 Blob 之前通常与颗粒相关的组合转变为 Blob 期间被认为是自由生活和化能自养的组合,这可能对初级生产以及有机碳的转化和输出有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5172/8536700/af902a88fe1a/42003_2021_2731_Fig1_HTML.jpg

相似文献

1
Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters.
Commun Biol. 2021 Oct 22;4(1):1217. doi: 10.1038/s42003-021-02731-9.
2
Diatoms shape the biogeography of heterotrophic prokaryotes in early spring in the Southern Ocean.
Environ Microbiol. 2019 Apr;21(4):1452-1465. doi: 10.1111/1462-2920.14579. Epub 2019 Mar 26.
3
Major imprint of surface plankton on deep ocean prokaryotic structure and activity.
Mol Ecol. 2020 May;29(10):1820-1838. doi: 10.1111/mec.15454. Epub 2020 May 25.
4
Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions.
mSphere. 2023 Jun 22;8(3):e0042022. doi: 10.1128/msphere.00420-22. Epub 2023 Apr 24.
6
Seasonality in ocean microbial communities.
Science. 2012 Feb 10;335(6069):671-6. doi: 10.1126/science.1198078.
7
Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes.
Mol Ecol. 2015 Nov;24(22):5692-706. doi: 10.1111/mec.13419. Epub 2015 Nov 6.
8
Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean.
ISME J. 2010 Nov;4(11):1431-42. doi: 10.1038/ismej.2010.65. Epub 2010 May 20.
9
Impact of Pacific Ocean heatwaves on phytoplankton community composition.
Commun Biol. 2023 Mar 13;6(1):263. doi: 10.1038/s42003-023-04645-0.
10
Persistent El Niño driven shifts in marine cyanobacteria populations.
PLoS One. 2020 Sep 16;15(9):e0238405. doi: 10.1371/journal.pone.0238405. eCollection 2020.

引用本文的文献

1
Archaea show different geographical distribution patterns compared to bacteria and fungi in Arctic marine sediments.
mLife. 2025 Apr 24;4(2):205-218. doi: 10.1002/mlf2.70006. eCollection 2025 Apr.
2
Effects of temperature and size class on the gut digesta microbiota of the sea urchin .
PeerJ. 2024 Nov 28;12:e18298. doi: 10.7717/peerj.18298. eCollection 2024.
3
A marine heatwave drives significant shifts in pelagic microbiology.
Commun Biol. 2024 Jan 24;7(1):125. doi: 10.1038/s42003-023-05702-4.
5
Water temperature and disease alters bacterial diversity and cultivability from American lobster () shells.
iScience. 2023 Apr 8;26(5):106606. doi: 10.1016/j.isci.2023.106606. eCollection 2023 May 19.

本文引用的文献

2
Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy.
ISME J. 2021 Mar;15(3):762-773. doi: 10.1038/s41396-020-00811-y. Epub 2020 Oct 23.
3
Heterotrophic Thaumarchaea with Small Genomes Are Widespread in the Dark Ocean.
mSystems. 2020 Jun 16;5(3):e00415-20. doi: 10.1128/mSystems.00415-20.
4
Depth-Differentiation and Seasonality of Planktonic Microbial Assemblages in the Monterey Bay Upwelling System.
Front Microbiol. 2020 May 25;11:1075. doi: 10.3389/fmicb.2020.01075. eCollection 2020.
7
Ecogenomics of the SAR11 clade.
Environ Microbiol. 2020 May;22(5):1748-1763. doi: 10.1111/1462-2920.14896. Epub 2019 Dec 25.
8
Charting the Complexity of the Marine Microbiome through Single-Cell Genomics.
Cell. 2019 Dec 12;179(7):1623-1635.e11. doi: 10.1016/j.cell.2019.11.017.
9
Global ecotypes in the ubiquitous marine clade SAR86.
ISME J. 2020 Jan;14(1):178-188. doi: 10.1038/s41396-019-0516-7. Epub 2019 Oct 14.
10
Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone.
Front Microbiol. 2019 Sep 13;10:2141. doi: 10.3389/fmicb.2019.02141. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验