Suppr超能文献

卷积神经网络对生理心电图噪声的鲁棒性。

Robustness of convolutional neural networks to physiological electrocardiogram noise.

机构信息

Department of Data Science, National Physical Laboratory, Teddington, UK.

Department of Mathematics, University of Surrey, Guildford, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Dec 13;379(2212):20200262. doi: 10.1098/rsta.2020.0262. Epub 2021 Oct 25.

Abstract

The electrocardiogram (ECG) is a widespread diagnostic tool in healthcare and supports the diagnosis of cardiovascular disorders. Deep learning methods are a successful and popular technique to detect indications of disorders from an ECG signal. However, there are open questions around the robustness of these methods to various factors, including physiological ECG noise. In this study, we generate clean and noisy versions of an ECG dataset before applying symmetric projection attractor reconstruction (SPAR) and scalogram image transformations. A convolutional neural network is used to classify these image transforms. For the clean ECG dataset, F1 scores for SPAR attractor and scalogram transforms were 0.70 and 0.79, respectively. Scores decreased by less than 0.05 for the noisy ECG datasets. Notably, when the network trained on clean data was used to classify the noisy datasets, performance decreases of up to 0.18 in F1 scores were seen. However, when the network trained on the noisy data was used to classify the clean dataset, the decrease was less than 0.05. We conclude that physiological ECG noise impacts classification using deep learning methods and careful consideration should be given to the inclusion of noisy ECG signals in the training data when developing supervised networks for ECG classification. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.

摘要

心电图(ECG)是医疗保健中广泛使用的诊断工具,可支持心血管疾病的诊断。深度学习方法是一种从 ECG 信号中检测疾病迹象的成功且流行的技术。然而,这些方法对各种因素(包括生理 ECG 噪声)的稳健性仍存在一些问题。在这项研究中,我们在应用对称投影吸引子重建(SPAR)和频谱图图像变换之前,生成了 ECG 数据集的干净和嘈杂版本。卷积神经网络用于对这些图像变换进行分类。对于干净的 ECG 数据集,SPAR 吸引子和频谱图变换的 F1 分数分别为 0.70 和 0.79。嘈杂的 ECG 数据集的分数下降幅度均小于 0.05。值得注意的是,当使用在干净数据上训练的网络对嘈杂数据集进行分类时,F1 分数的性能下降高达 0.18。然而,当使用在嘈杂数据上训练的网络对干净数据集进行分类时,下降幅度小于 0.05。我们得出结论,生理 ECG 噪声会影响深度学习方法的分类,在为 ECG 分类开发监督网络时,应仔细考虑将嘈杂的 ECG 信号纳入训练数据中。本文是“心血管生理学中的高级计算:新挑战和新机遇”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96c9/8543045/fbd99a633d45/rsta20200262f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验