文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

智能响应巨噬细胞膜伪装介孔硅纳米棒药物递送系统用于肿瘤的精准靶向治疗。

An intelligent responsive macrophage cell membrane-camouflaged mesoporous silicon nanorod drug delivery system for precise targeted therapy of tumors.

机构信息

Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China.

Department of Radiology, Luodian Hospital, Baoshan District, Shanghai, 201908, People's Republic of China.

出版信息

J Nanobiotechnology. 2021 Oct 24;19(1):336. doi: 10.1186/s12951-021-01082-1.


DOI:10.1186/s12951-021-01082-1
PMID:34689763
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8543955/
Abstract

Macrophage cell membrane-camouflaged nanocarriers can effectively reduce immune cell clearance and actively target tumors. In this study, a macrophage cell membrane-camouflaged mesoporous silica nanorod (MSNR)-based antitumor drug carrier equipped with a cationic polymer layer was developed. As drug carriers, these MSNRs were loaded with the thermosensitive phase change material L-menthol (LM), the chemotherapy drug doxorubicin (DOX) and the fluorescent molecule indocyanine green (ICG). The rod-like shape of the MSNRs was shown to enhance the penetration of the drug carriers to tumors. In the weakly acidic tumor microenvironment, the cationic polymer exhibited a proton sponge effect to trigger macrophage cell membrane coating detachment, promoting tumor cell uptake. Following nanocarrier uptake, ICG is heated by near-infrared (NIR) irradiation to make LM undergo a phase transition to release DOX and generate a synergistic effect of thermochemotherapy which kills tumor cells and inhibits tumor growth together with reactive oxygen species (ROS) produced by ICG. Overall, this nanohybrid drug delivery system demonstrates an intelligent cascade response, leads to tissue-cell specific targeting and improves drug release accuracy, thus proving to be an effective cancer therapy.

摘要

巨噬细胞膜伪装纳米载体可以有效减少免疫细胞清除并主动靶向肿瘤。在这项研究中,开发了一种基于巨噬细胞膜伪装的介孔硅纳米棒(MSNR)的抗肿瘤药物载体,该载体配备了阳离子聚合物层。作为药物载体,这些 MSNR 负载了热敏相变材料 L-薄荷醇(LM)、化疗药物阿霉素(DOX)和荧光分子吲哚菁绿(ICG)。MSNR 的棒状形状被证明可以增强药物载体对肿瘤的穿透能力。在弱酸性肿瘤微环境中,阳离子聚合物表现出质子海绵效应,触发巨噬细胞膜涂层脱落,促进肿瘤细胞摄取。纳米载体摄取后,近红外(NIR)辐射使 ICG 加热,使 LM 发生相变,释放 DOX,并产生热化疗协同效应,与 ICG 产生的活性氧(ROS)一起杀死肿瘤细胞并抑制肿瘤生长。总的来说,这种纳米杂化药物递送系统表现出智能级联反应,导致组织-细胞特异性靶向,并提高药物释放的准确性,从而被证明是一种有效的癌症治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/2051e5583bac/12951_2021_1082_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/3a0703e23fb2/12951_2021_1082_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/cd1cbfad1857/12951_2021_1082_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/78fd337d5744/12951_2021_1082_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/b474b1e5f9aa/12951_2021_1082_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/cd9974d82ef9/12951_2021_1082_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/d34e1a787fb4/12951_2021_1082_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/d62ba00b5655/12951_2021_1082_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/2051e5583bac/12951_2021_1082_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/3a0703e23fb2/12951_2021_1082_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/cd1cbfad1857/12951_2021_1082_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/78fd337d5744/12951_2021_1082_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/b474b1e5f9aa/12951_2021_1082_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/cd9974d82ef9/12951_2021_1082_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/d34e1a787fb4/12951_2021_1082_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/d62ba00b5655/12951_2021_1082_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3098/8543955/2051e5583bac/12951_2021_1082_Fig8_HTML.jpg

相似文献

[1]
An intelligent responsive macrophage cell membrane-camouflaged mesoporous silicon nanorod drug delivery system for precise targeted therapy of tumors.

J Nanobiotechnology. 2021-10-24

[2]
Red Blood Cell Membrane Camouflaged Mesoporous Silica Nanorods as Nanocarriers for Synergistic Chemo-Photothermal Therapy.

IEEE Trans Nanobioscience. 2023-7

[3]
Facile formulation of near-infrared light-triggered hollow mesoporous silica nanoparticles based on mitochondria targeting for on-demand chemo/photothermal/photodynamic therapy.

Nanotechnology. 2019-3-26

[4]
Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment.

Acta Biomater. 2017-3-15

[5]
Progressive enhanced photodynamic therapy and enhanced chemotherapy fighting against malignant tumors with sequential drug release.

Biomed Mater. 2024-5-10

[6]
Bubble-generating polymersomes loaded with both indocyanine green and doxorubicin for effective chemotherapy combined with photothermal therapy.

Acta Biomater. 2018-5-21

[7]
Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging.

Talanta. 2018-1-9

[8]
A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy.

Acta Biomater. 2017-9-1

[9]
Synergistic Photothermal Therapy and Chemotherapy Enabled by Tumor Microenvironment-Responsive Targeted SWCNT Delivery.

Int J Mol Sci. 2024-8-23

[10]
Width-Consistent Mesoporous Silica Nanorods with a Precisely Controlled Aspect Ratio for Lysosome Dysfunctional Synergistic Chemotherapy/Photothermal Therapy/Starvation Therapy/Oxidative Therapy.

ACS Appl Mater Interfaces. 2020-6-3

引用本文的文献

[1]
Overcoming Biological Barriers in Cancer Therapy: Cell Membrane-Based Nanocarrier Strategies for Precision Delivery.

Int J Nanomedicine. 2025-3-13

[2]
Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools.

Int J Nanomedicine. 2024-12-19

[3]
A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[4]
Menthol: An underestimated anticancer agent.

Front Pharmacol. 2023-3-17

[5]
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review.

Int J Mol Sci. 2023-2-8

[6]
Doxorubicin hydrochloride and L-arginine co-loaded nanovesicle for drug resistance reversal stimulated by near-infrared light.

Asian J Pharm Sci. 2022-11

[7]
Phase-change materials-based platforms for biomedicine.

Front Bioeng Biotechnol. 2022-9-2

[8]
The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery.

J Nanobiotechnology. 2022-1-6

本文引用的文献

[1]
ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer.

J Nanobiotechnology. 2021-5-11

[2]
Drug Targeting Platelet Membrane-Coated Nanoparticles.

Small Struct. 2020-10

[3]
Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma.

J Nanobiotechnology. 2021-1-6

[4]
Regenerable Cerium Oxide Nanozyme-Loaded pH/HO-Responsive Nanovesicle for Tumor-Targeted Photothermal and Photodynamic Therapies.

ACS Appl Mater Interfaces. 2021-1-13

[5]
High-Performance Dual Combination Therapy for Cancer Treatment with Hybrid Membrane-Camouflaged Mesoporous Silica Gold Nanorods.

ACS Appl Mater Interfaces. 2020-12-30

[6]
A nanoplatform based on mesoporous silica-coated gold nanorods for cancer triplex therapy.

J Mater Chem B. 2020-11-4

[7]
Graphitic Carbon Nitride Quantum Dots Embedded in Carbon Nanosheets for Near-Infrared Imaging-Guided Combined Photo-Chemotherapy.

ACS Nano. 2020-10-27

[8]
A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence.

ACS Nano. 2020-10-27

[9]
Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer.

Biomaterials. 2020-10

[10]
Ultrasound-Driven Biomimetic Nanosystem Suppresses Tumor Growth and Metastasis through Sonodynamic Therapy, CO Therapy, and Indoleamine 2,3-Dioxygenase Inhibition.

ACS Nano. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索