Suppr超能文献

使用阿坦加纳-巴莱努分数阶导数对一些非洲国家新冠疫情的非线性增长及数学建模

Nonlinear growth and mathematical modelling of COVID-19 in some African countries with the Atangana-Baleanu fractional derivative.

作者信息

Kolebaje O T, Vincent O R, Vincent U E, McClintock P V E

机构信息

Department of Physics, Adeyemi College of Education, 350106, Ondo, Nigeria.

Department of Physical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria.

出版信息

Commun Nonlinear Sci Numer Simul. 2022 Feb;105:106076. doi: 10.1016/j.cnsns.2021.106076. Epub 2021 Oct 19.

Abstract

We analyse the time-series evolution of the cumulative number of confirmed cases of COVID-19, the novel coronavirus disease, for some African countries. We propose a mathematical model, incorporating non-pharmaceutical interventions to unravel the disease transmission dynamics. Analysis of the stability of the model's steady states was carried out, and the reproduction number , a vital key for flattening the time-evolution of COVID-19 cases, was obtained by means of the next generation matrix technique. By dividing the time evolution of the pandemic for the cumulative number of confirmed infected cases into different regimes or intervals, hereafter referred to as , numerical simulations were performed to fit the proposed model to the cumulative number of confirmed infections for different phases of COVID-19 during its first wave. The estimated declined from 2.452-9.179 during the first phase of the infection to 1.374-2.417 in the last phase. Using the Atangana-Baleanu fractional derivative, a fractional COVID-19 model is proposed and numerical simulations performed to establish the dependence of the disease dynamics on the order of the fractional derivatives. An elasticity and sensitivity analysis of was carried out to determine the most significant parameters for combating the disease outbreak. These were found to be the effective disease transmission rate, the disease diagnosis or case detection rate, the proportion of susceptible individuals taking precautions, and the disease infection rate. Our results show that if the disease infection rate is less than 0.082/day, then is always less than 1; and if at least 55.29% of the susceptible population take precautions such as regular hand washing with soap, use of sanitizers, and the wearing of face masks, then the reproduction number remains below unity irrespective of the disease infection rate. Keeping values below unity leads to a decrease in COVID-19 prevalence.

摘要

我们分析了一些非洲国家新型冠状病毒病COVID-19确诊病例累计数的时间序列演变。我们提出了一个数学模型,纳入非药物干预措施以揭示疾病传播动态。对该模型稳态的稳定性进行了分析,并通过下一代矩阵技术获得了繁殖数 ,这是使COVID-19病例时间演变趋于平缓的关键因素。通过将大流行期间确诊感染病例累计数的时间演变划分为不同阶段或区间(以下称为 ),进行了数值模拟,以使所提出的模型适用于COVID-19第一波不同阶段的确诊感染累计数。估计的 在感染第一阶段从2.452 - 9.179降至最后阶段的1.374 - 2.417。使用阿坦加纳 - 巴莱努分数阶导数,提出了一个分数阶COVID-19模型,并进行了数值模拟以确定疾病动态对分数阶导数阶数的依赖性。对 进行了弹性和敏感性分析,以确定抗击疾病爆发的最重要参数。发现这些参数为有效疾病传播率、疾病诊断或病例检测率、采取预防措施的易感个体比例以及疾病感染率。我们的结果表明,如果疾病感染率小于0.082/天,那么 始终小于1;并且如果至少55.29%的易感人群采取诸如用肥皂定期洗手、使用消毒剂和佩戴口罩等预防措施,那么无论疾病感染率如何,繁殖数 都保持在1以下。使 值保持在1以下会导致COVID-19患病率下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc20/8525026/ed236e9e0ae0/gr1_lrg.jpg

相似文献

1
Nonlinear growth and mathematical modelling of COVID-19 in some African countries with the Atangana-Baleanu fractional derivative.
Commun Nonlinear Sci Numer Simul. 2022 Feb;105:106076. doi: 10.1016/j.cnsns.2021.106076. Epub 2021 Oct 19.
2
Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator.
Comput Methods Biomech Biomed Engin. 2023 Jan;26(1):98-112. doi: 10.1080/10255842.2022.2047954. Epub 2022 Mar 10.
3
Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan.
Eur Phys J Plus. 2020;135(10):795. doi: 10.1140/epjp/s13360-020-00819-5. Epub 2020 Oct 8.
4
A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative.
Chaos Solitons Fractals. 2021 Dec;153:111486. doi: 10.1016/j.chaos.2021.111486. Epub 2021 Oct 9.
5
Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel.
Adv Differ Equ. 2021;2021(1):319. doi: 10.1186/s13662-021-03470-1. Epub 2021 Jul 3.
6
A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel.
Chaos Solitons Fractals. 2021 Nov;152:111427. doi: 10.1016/j.chaos.2021.111427. Epub 2021 Sep 20.
7
A new fractional mathematical modelling of COVID-19 with the availability of vaccine.
Results Phys. 2021 May;24:104213. doi: 10.1016/j.rinp.2021.104213. Epub 2021 Apr 20.
8
Mathematical modeling and analysis of the novel Coronavirus using Atangana-Baleanu derivative.
Results Phys. 2021 Jun;25:104240. doi: 10.1016/j.rinp.2021.104240. Epub 2021 Apr 26.
9
Modeling and analysis of monkeypox disease using fractional derivatives.
Results Eng. 2023 Mar;17:100786. doi: 10.1016/j.rineng.2022.100786. Epub 2022 Nov 29.
10
On the dynamical modeling of COVID-19 involving Atangana-Baleanu fractional derivative and based on Daubechies framelet simulations.
Chaos Solitons Fractals. 2020 Nov;140:110171. doi: 10.1016/j.chaos.2020.110171. Epub 2020 Jul 28.

引用本文的文献

1
Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19.
J Math Anal Appl. 2023 Oct 15;526(2):127283. doi: 10.1016/j.jmaa.2023.127283. Epub 2023 Mar 31.
2
A fractional order model for the co-interaction of COVID-19 and Hepatitis B virus.
Results Phys. 2022 Jun;37:105498. doi: 10.1016/j.rinp.2022.105498. Epub 2022 Apr 21.
3
Fractional model analysis of COVID-19 spread based on big data platform.
Heliyon. 2023 Jan 20;9(1):e12670. doi: 10.1016/j.heliyon.2022.e12670. eCollection 2023 Jan.
4
On fractal-fractional Covid-19 mathematical model.
Chaos Solitons Fractals. 2022 Apr;157:111937. doi: 10.1016/j.chaos.2022.111937. Epub 2022 Feb 25.
5
Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives.
Chaos Solitons Fractals. 2022 Sep;162:112427. doi: 10.1016/j.chaos.2022.112427. Epub 2022 Jul 11.
6
Backward bifurcation and optimal control in a co-infection model for SARS-CoV-2 and ZIKV.
Results Phys. 2022 Jun;37:105481. doi: 10.1016/j.rinp.2022.105481. Epub 2022 Apr 9.
7
Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination.
Chaos Solitons Fractals. 2022 Mar;156:111825. doi: 10.1016/j.chaos.2022.111825. Epub 2022 Jan 31.

本文引用的文献

1
A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations.
Infect Dis Model. 2020 Nov 30;6:148-168. doi: 10.1016/j.idm.2020.11.005. eCollection 2021.
2
COVID-19 pandemic: a mobility-dependent SEIR model with undetected cases in Italy, Europe, and US.
Epidemiol Prev. 2020 Sep-Dec;44(5-6 Suppl 2):136-143. doi: 10.19191/EP20.5-6.S2.112.
5
On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy.
Commun Nonlinear Sci Numer Simul. 2020 Nov;90:105372. doi: 10.1016/j.cnsns.2020.105372. Epub 2020 Jun 1.
6
Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria.
Chaos Solitons Fractals. 2020 Oct;139:110032. doi: 10.1016/j.chaos.2020.110032. Epub 2020 Jun 20.
7
Could masks curtail the post-lockdown resurgence of COVID-19 in the US?
Math Biosci. 2020 Nov;329:108452. doi: 10.1016/j.mbs.2020.108452. Epub 2020 Aug 18.
8
Modeling Nigerian Covid-19 cases: A comparative analysis of models and estimators.
Chaos Solitons Fractals. 2020 Sep;138:109911. doi: 10.1016/j.chaos.2020.109911. Epub 2020 Jun 9.
9
Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.
Comput Methods Biomech Biomed Engin. 2020 Aug;23(11):710-717. doi: 10.1080/10255842.2020.1759560. Epub 2020 May 5.
10
Estimation of COVID-19 prevalence in Italy, Spain, and France.
Sci Total Environ. 2020 Aug 10;729:138817. doi: 10.1016/j.scitotenv.2020.138817. Epub 2020 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验