Suppr超能文献

论疫情增长实时预测的不确定性:以中国和意大利的新冠肺炎为例

On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy.

作者信息

Alberti Tommaso, Faranda Davide

机构信息

INAF - Istituto di Astrofisica e Planetologia Spaziali, via del Fosso del Cavaliere 100, Roma 00133, Italy.

Laboratoire des Sciences du Climat et de l'Environnement, 5 CEA Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, 6 Université Paris-Saclay & IPSL, Gif-sur-Yvette 91191, France.

出版信息

Commun Nonlinear Sci Numer Simul. 2020 Nov;90:105372. doi: 10.1016/j.cnsns.2020.105372. Epub 2020 Jun 1.

Abstract

While COVID-19 is rapidly propagating around the globe, the need for providing real-time forecasts of the epidemics pushes fits of dynamical and statistical models to available data beyond their capabilities. Here we focus on statistical predictions of COVID-19 infections performed by fitting asymptotic distributions to actual data. By taking as a case-study the epidemic evolution of total COVID-19 infections in Chinese provinces and Italian regions, we find that predictions are characterized by large uncertainties at the early stages of the epidemic growth. Those uncertainties significantly reduce after the epidemics peak is reached. Differences in the uncertainty of the forecasts at a regional level can be used to highlight the delay in the spread of the virus. Our results warn that long term extrapolation of epidemics counts must be handled with extreme care as they crucially depend not only on the quality of data, but also on the stage of the epidemics, due to the intrinsically non-linear nature of the underlying dynamics. These results suggest that real-time epidemiological projections should include wide uncertainty ranges and urge for the needs of compiling high-quality datasets of infections counts, including asymptomatic patients.

摘要

在新冠病毒肺炎(COVID-19)在全球迅速传播之际,提供疫情实时预测的需求使得动态模型和统计模型对现有数据的拟合超出了其能力范围。在此,我们聚焦于通过将渐近分布拟合到实际数据来进行的COVID-19感染统计预测。以中国省份和意大利地区的COVID-19总感染疫情演变作为案例研究,我们发现,在疫情增长的早期阶段,预测具有很大的不确定性。在疫情达到峰值后,这些不确定性会显著降低。区域层面预测不确定性的差异可用于突出病毒传播的延迟情况。我们的结果警告称,对疫情数量的长期外推必须极其谨慎,因为这不仅关键取决于数据质量,还取决于疫情所处阶段,这是由于潜在动态本质上具有非线性。这些结果表明,实时流行病学预测应包含较宽的不确定性范围,并强调需要编制高质量的感染病例数据集,包括无症状患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e8/7263229/6c027d2d290b/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验