Suppr超能文献

基于 SCM-YOLO 的车间安全帽佩戴检测模型

Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

机构信息

School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China.

Liuzhou Wuling Automobile Industry Co., Ltd., Liuzhou 545000, China.

出版信息

Sensors (Basel). 2022 Sep 5;22(17):6702. doi: 10.3390/s22176702.

Abstract

In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.

摘要

为了解决基于 YOLOv4-tiny 算法的复杂场景目标检测中存在的特征提取不足、精度低、召回率低等问题,提出了一种改进的 YOLOv4-tiny 安全帽佩戴检测算法 SCM-YOLO。首先,在 YOLOv4-tiny 模型的骨干网络后添加空间金字塔池化(SPP)结构,提高其对不同尺度特征的适应性,增强其有效特征提取能力。其次,引入卷积注意力模块(CBAM)、Mish 激活函数、K-Means++聚类算法、标签平滑和 Mosaic 数据增强,在保证检测速度的同时,提高小目标的检测精度。经过大量实验,所提出的 SCM-YOLO 算法的 mAP 达到 93.19%,比 YOLOv4-tiny 算法高 4.76%。其推理速度达到 22.9FPS(GeForce GTX 1050Ti),满足了复杂场景中安全帽实时、准确检测的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/7b33251951b4/sensors-22-06702-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验