文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 SCM-YOLO 的车间安全帽佩戴检测模型

Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

机构信息

School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China.

Liuzhou Wuling Automobile Industry Co., Ltd., Liuzhou 545000, China.

出版信息

Sensors (Basel). 2022 Sep 5;22(17):6702. doi: 10.3390/s22176702.


DOI:10.3390/s22176702
PMID:36081161
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9460346/
Abstract

In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.

摘要

为了解决基于 YOLOv4-tiny 算法的复杂场景目标检测中存在的特征提取不足、精度低、召回率低等问题,提出了一种改进的 YOLOv4-tiny 安全帽佩戴检测算法 SCM-YOLO。首先,在 YOLOv4-tiny 模型的骨干网络后添加空间金字塔池化(SPP)结构,提高其对不同尺度特征的适应性,增强其有效特征提取能力。其次,引入卷积注意力模块(CBAM)、Mish 激活函数、K-Means++聚类算法、标签平滑和 Mosaic 数据增强,在保证检测速度的同时,提高小目标的检测精度。经过大量实验,所提出的 SCM-YOLO 算法的 mAP 达到 93.19%,比 YOLOv4-tiny 算法高 4.76%。其推理速度达到 22.9FPS(GeForce GTX 1050Ti),满足了复杂场景中安全帽实时、准确检测的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/5b2da6eb0525/sensors-22-06702-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/7b33251951b4/sensors-22-06702-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/42182900d338/sensors-22-06702-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/0888d3da6980/sensors-22-06702-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/314528b9763b/sensors-22-06702-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/c36f5a02b9e6/sensors-22-06702-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/956ac765ee16/sensors-22-06702-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/2fd012e7e255/sensors-22-06702-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/443341dd193b/sensors-22-06702-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/4abc51fc9639/sensors-22-06702-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/86f15b4e84a9/sensors-22-06702-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/139f9669d9c7/sensors-22-06702-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/b3607f21cc0a/sensors-22-06702-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/800bdde6aa09/sensors-22-06702-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/243fb1e16f00/sensors-22-06702-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/9e8e0a7a4d30/sensors-22-06702-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/80146c8b45ea/sensors-22-06702-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/5b2da6eb0525/sensors-22-06702-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/7b33251951b4/sensors-22-06702-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/42182900d338/sensors-22-06702-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/0888d3da6980/sensors-22-06702-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/314528b9763b/sensors-22-06702-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/c36f5a02b9e6/sensors-22-06702-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/956ac765ee16/sensors-22-06702-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/2fd012e7e255/sensors-22-06702-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/443341dd193b/sensors-22-06702-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/4abc51fc9639/sensors-22-06702-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/86f15b4e84a9/sensors-22-06702-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/139f9669d9c7/sensors-22-06702-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/b3607f21cc0a/sensors-22-06702-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/800bdde6aa09/sensors-22-06702-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/243fb1e16f00/sensors-22-06702-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/9e8e0a7a4d30/sensors-22-06702-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/80146c8b45ea/sensors-22-06702-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75e/9460346/5b2da6eb0525/sensors-22-06702-g017.jpg

相似文献

[1]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

[2]
Research on application of helmet wearing detection improved by YOLOv4 algorithm.

Math Biosci Eng. 2023-3-6

[3]
Research of Maritime Object Detection Method in Foggy Environment Based on Improved Model SRC-YOLO.

Sensors (Basel). 2022-10-13

[4]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[5]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[6]
Improved YOLOv4-tiny based on attention mechanism for skin detection.

PeerJ Comput Sci. 2023-3-10

[7]
A novel algorithm for small object detection based on YOLOv4.

PeerJ Comput Sci. 2023-3-22

[8]
JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection.

Comput Intell Neurosci. 2021-4-1

[9]
TSR-YOLO: A Chinese Traffic Sign Recognition Algorithm for Intelligent Vehicles in Complex Scenes.

Sensors (Basel). 2023-1-9

[10]
A New Deep Model for Detecting Multiple Moving Targets in Real Traffic Scenarios: Machine Vision-Based Vehicles.

Sensors (Basel). 2022-5-14

引用本文的文献

[1]
Study on the Recognition of Coal Miners' Unsafe Behavior and Status in the Hoist Cage Based on Machine Vision.

Sensors (Basel). 2023-10-28

[2]
Improved YOLOv4-tiny based on attention mechanism for skin detection.

PeerJ Comput Sci. 2023-3-10

本文引用的文献

[1]
SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

Sensors (Basel). 2022-3-17

[2]
A deep learning-based ensemble method for helmet-wearing detection.

PeerJ Comput Sci. 2020-12-7

[3]
Smart Helmet 5.0 for Industrial Internet of Things Using Artificial Intelligence.

Sensors (Basel). 2020-11-1

[4]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[5]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索