Zhang Dongzhou, Mandal Sagarmoy, Chung Duck Young, Xu Jingui, Shan Nannan, Kanatzidis Mercouri G, Chen Ming
GeoSoilEnviroCARS, University of Chicago, Argonne, IL, USA.
Department of Chemistry, Purdue University, West Lafayette, IN, USA.
Commun Chem. 2024 Aug 8;7(1):175. doi: 10.1038/s42004-024-01265-5.
Cesium lead bromide (CsPbBr) is a prominent halide perovskite with extensive optoelectronic applications. In this study, we report the pressure modulation of CsPbBr's crystal structure and electronic properties at room temperature up to 5 GPa. We have observed a crystal structure transition from the orthorhombic Pnma space group to a new monoclinic phase in the space group P2/c at 2.08 GPa. The structure is associated with ~8% of density jump across the transition boundary. DFT calculations have suggested that the structure transition leads to a change in the electronic band structure, and there is an emergent indirect bandgap at the Pnma-P2/c phase transition boundary at 2.08 GPa. Across the transition boundary, the electronic band gap of CsPbBr increased from 2.07 eV to 2.38 eV, which explains its pressure-induced color change. Our study demonstrates the importance of using in-situ crystal structure in the electronic band structure calculations in halide perovskites.
溴化铯铅(CsPbBr)是一种重要的卤化物钙钛矿,具有广泛的光电应用。在本研究中,我们报道了室温下高达5吉帕压力对CsPbBr晶体结构和电子性质的调制。我们观察到在2.08吉帕时,晶体结构从正交Pnma空间群转变为空间群P2/c中的新单斜相。该结构与跨越转变边界约8%的密度跃变相关。密度泛函理论(DFT)计算表明,结构转变导致电子能带结构发生变化,并且在2.08吉帕的Pnma-P2/c相转变边界处出现了一个新的间接带隙。跨越转变边界,CsPbBr的电子带隙从2.07电子伏特增加到2.38电子伏特,这解释了其压力诱导的颜色变化。我们的研究证明了在卤化物钙钛矿的电子能带结构计算中使用原位晶体结构的重要性。