Suppr超能文献

基于生成对抗网络的无监督学习在 X 射线图像轮胎缺陷自动检测中的应用。

Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images.

机构信息

State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Zhongce Rubber Group Co., Ltd., Hangzhou 310018, China.

出版信息

Sensors (Basel). 2021 Oct 12;21(20):6773. doi: 10.3390/s21206773.

Abstract

Automatic defect detection of tire has become an essential issue in the tire industry. However, it is challenging to inspect the inner structure of tire by surface detection. Therefore, an X-ray image sensor is used for tire defect inspection. At present, detection of defective tires is inefficient because tire factories commonly conduct detection by manually checking X-ray images. With the development of deep learning, supervised learning has been introduced to replace human resources. However, in actual industrial scenes, defective samples are rare in comparison to defect-free samples. The quantity of defective samples is insufficient for supervised models to extract features and identify nonconforming products from qualified ones. To address these problems, we propose an unsupervised approach, using no labeled defect samples for training. Moreover, we introduce an augmented reconstruction method and a self-supervised training strategy. The approach is based on the idea of reconstruction. In the training phase, only defect-free samples are used for training the model and updating memory items in the memory module, so the reproduced images in the test phase are bound to resemble defect-free images. The reconstruction residual is utilized to detect defects. The introduction of self-supervised training strategy further strengthens the reconstruction residual to improve detection performance. The proposed method is experimentally proved to be effective. The Area Under Curve (AUC) on a tire X-ray dataset reaches 0.873, so the proposed method is promising for application.

摘要

轮胎的自动缺陷检测已经成为轮胎行业的一个重要问题。然而,通过表面检测来检查轮胎的内部结构具有挑战性。因此,X 射线图像传感器被用于轮胎缺陷检测。目前,由于轮胎工厂通常通过手动检查 X 射线图像来进行检测,因此检测有缺陷的轮胎效率低下。随着深度学习的发展,监督学习已经被引入来取代人力资源。然而,在实际的工业场景中,缺陷样本相对于无缺陷样本来说是罕见的。缺陷样本的数量不足以让监督模型从合格产品中提取特征并识别不合格产品。为了解决这些问题,我们提出了一种无监督的方法,无需使用标记的缺陷样本进行训练。此外,我们引入了一种增强重建方法和一种自监督训练策略。该方法基于重建的思想。在训练阶段,仅使用无缺陷样本来训练模型并更新记忆模块中的记忆项,因此测试阶段的重建图像必然类似于无缺陷图像。使用重建残差来检测缺陷。自监督训练策略的引入进一步增强了重建残差,从而提高了检测性能。实验证明,所提出的方法是有效的。在轮胎 X 射线数据集上,曲线下面积(AUC)达到 0.873,因此该方法有望得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aea/8540295/042d2805bf5a/sensors-21-06773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验