Suppr超能文献

一种用于提高车辆路径跟踪性能的可变采样时间模型预测控制算法

A Variable-Sampling Time Model Predictive Control Algorithm for Improving Path-Tracking Performance of a Vehicle.

作者信息

Choi Yoonsuk, Lee Wonwoo, Kim Jeesu, Yoo Jinwoo

机构信息

The Graduate School of Automotive Engineering, Kookmin University, Seoul 02707, Korea.

Department of Congno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.

出版信息

Sensors (Basel). 2021 Oct 14;21(20):6845. doi: 10.3390/s21206845.

Abstract

This paper proposes a novel model predictive control (MPC) algorithm that increases the path tracking performance according to the control input. The proposed algorithm reduces the path tracking errors of MPC by updating the sampling time of the next step according to the control inputs (i.e., the lateral velocity and front steering angle) calculated in each step of the MPC algorithm. The scenarios of a mixture of straight and curved driving paths were constructed, and the optimal control input was calculated in each step. In the experiment, a scenario was created with the Automated Driving Toolbox of MATLAB, and the path-following performance characteristics and computation times of the existing and proposed MPC algorithms were verified and compared with simulations. The results prove that the proposed MPC algorithm has improved path-following performance compared to those of the existing MPC algorithm.

摘要

本文提出了一种新颖的模型预测控制(MPC)算法,该算法可根据控制输入提高路径跟踪性能。所提出的算法通过根据MPC算法每一步计算出的控制输入(即横向速度和前转向角)更新下一步的采样时间,来减少MPC的路径跟踪误差。构建了直线和曲线行驶路径混合的场景,并在每一步计算最优控制输入。在实验中,利用MATLAB的自动驾驶工具箱创建了一个场景,并通过仿真验证和比较了现有MPC算法和所提出的MPC算法的路径跟踪性能特征及计算时间。结果证明,与现有MPC算法相比,所提出的MPC算法具有更好的路径跟踪性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfd/8541678/848e2eb2fc63/sensors-21-06845-g001.jpg

相似文献

2
Investigating the Path Tracking Algorithm Based on BP Neural Network.
Sensors (Basel). 2023 May 6;23(9):4533. doi: 10.3390/s23094533.
3
Model Predictive Controller Approach for Automated Vehicle's Path Tracking.
Sensors (Basel). 2023 Aug 1;23(15):6862. doi: 10.3390/s23156862.
4
Analysis of explicit model predictive control for path-following control.
PLoS One. 2018 Mar 13;13(3):e0194110. doi: 10.1371/journal.pone.0194110. eCollection 2018.
5
A Two-Layer Controller for Lateral Path Tracking Control of Autonomous Vehicles.
Sensors (Basel). 2020 Jul 1;20(13):3689. doi: 10.3390/s20133689.
8
Model predictive control with fuzzy logic switching for path tracking of autonomous vehicles.
ISA Trans. 2022 Oct;129(Pt A):193-205. doi: 10.1016/j.isatra.2021.12.022. Epub 2021 Dec 27.
9
Application improvement of A* algorithm in intelligent vehicle trajectory planning.
Math Biosci Eng. 2020 Nov 17;18(1):1-21. doi: 10.3934/mbe.2021001.
10
LTV-MPC Approach for Automated Vehicle Path Following at the Limit of Handling.
Sensors (Basel). 2022 Aug 3;22(15):5807. doi: 10.3390/s22155807.

引用本文的文献

1
Multi-Target Vehicle Tracking Algorithm Based on Improved DeepSORT.
Sensors (Basel). 2024 Oct 31;24(21):7014. doi: 10.3390/s24217014.
3
Machine vision-based autonomous road hazard avoidance system for self-driving vehicles.
Sci Rep. 2024 May 28;14(1):12178. doi: 10.1038/s41598-024-62629-4.
4
Weight Adaptive Path Tracking Control for Autonomous Vehicles Based on PSO-BP Neural Network.
Sensors (Basel). 2022 Dec 30;23(1):412. doi: 10.3390/s23010412.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验