Suppr超能文献

用于自动驾驶车辆路径跟踪的模型预测控制器方法

Model Predictive Controller Approach for Automated Vehicle's Path Tracking.

作者信息

Domina Ádám, Tihanyi Viktor

机构信息

Department of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Hungary.

出版信息

Sensors (Basel). 2023 Aug 1;23(15):6862. doi: 10.3390/s23156862.

Abstract

In this paper, a model predictive control (MPC) approach for controlling automated vehicle steering during path tracking is presented. A (linear parameter-varying) LPV vehicle plant model including steering dynamics is proposed to determine the system evolution matrices. The steering dynamics are modeled in two different ways by using first-order lag and a second-order lag; the application of the first-order system resulted in a slightly more accurate path-following. Additionally, a cascade MPC structure is applied in which two MPCs are used; the second-order steering dynamics are separated from the path-following controller in a second MPC. Both steering system models and the cascade MPC are evaluated in simulation and on a test vehicle. The reference trajectory is calculated based on a fixed predefined path by transforming the necessary path segment to the vehicle ego coordinate system, thereby describing the reference for the path-following task in a novel way. The MPC method computes the optimal steering angle vector at each time step for following the path. The longitudinal dynamics is controlled separately by a PI controller. After simulation evaluation, experimental tests were conducted on a test vehicle on an asphalt surface. Both simulation and experimental results prove the effectiveness of the proposed reference definition method. The effect of the applied steering system models is evaluated. The inclusion of the steering dynamics in the prediction model resulted in a significant increase in controller performance. Finally, the computational requirements of the proposed control and modeling methods are also discussed.

摘要

本文提出了一种用于路径跟踪期间控制自动驾驶车辆转向的模型预测控制(MPC)方法。提出了一种包括转向动力学的(线性参数变化)LPV车辆模型来确定系统演化矩阵。通过使用一阶滞后和二阶滞后两种不同方式对转向动力学进行建模;一阶系统的应用在路径跟踪方面产生了稍高的精度。此外,应用了一种级联MPC结构,其中使用了两个MPC;二阶转向动力学在第二个MPC中与路径跟踪控制器分离。转向系统模型和级联MPC均在仿真中以及在测试车辆上进行了评估。参考轨迹是通过将必要的路径段转换到车辆自身坐标系,基于固定的预定义路径计算得出的,从而以一种新颖的方式描述路径跟踪任务的参考。MPC方法在每个时间步计算用于跟踪路径的最优转向角向量。纵向动力学由PI控制器单独控制。经过仿真评估后,在一辆测试车辆的沥青路面上进行了实验测试。仿真和实验结果均证明了所提出的参考定义方法的有效性。评估了所应用的转向系统模型的效果。在预测模型中纳入转向动力学导致控制器性能显著提高。最后,还讨论了所提出的控制和建模方法的计算要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f1/10422398/075903d30fc2/sensors-23-06862-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验