Department of Health Systems, Management and Policy, Colorado School of Public Health, Colorado University, Anschutz, USA.
Department of Medicine, Washington University School of Medicine, St. Louis, USA.
BMC Med Res Methodol. 2021 Oct 25;21(1):228. doi: 10.1186/s12874-021-01422-7.
After activation of the Hospital Readmission Reduction Program (HRRP) in 2012, hospitals nationwide experimented broadly with the implementation of Transitional Care (TC) strategies to reduce hospital readmissions. Although numerous evidence-based TC models exist, they are often adapted to local contexts, rendering large-scale evaluation difficult. Little systematic evidence exists about prevailing implementation patterns of TC strategies among hospitals, nor which strategies in which combinations are most effective at improving patient outcomes. We aimed to identify and define combinations of TC strategies, or groups of transitional care activities, implemented among a large and diverse cohort of U.S. hospitals, with the ultimate goal of evaluating their comparative effectiveness.
We collected implementation data for 13 TC strategies through a nationwide, web-based survey of representatives from short-term acute-care and critical access hospitals (N = 370) and obtained Medicare claims data for patients discharged from participating hospitals. TC strategies were grouped separately through factor analysis and latent class analysis.
We observed 348 variations in how hospitals implemented 13 TC strategies, highlighting the diversity of hospitals' TC strategy implementation. Factor analysis resulted in five overlapping groups of TC strategies, including those characterized by 1) medication reconciliation, 2) shared decision making, 3) identifying high risk patients, 4) care plan, and 5) cross-setting information exchange. We determined that the groups suggested by factor analysis results provided a more logical grouping. Further, groups of TC strategies based on factor analysis performed better than the ones based on latent class analysis in detecting differences in 30-day readmission trends.
U.S. hospitals uniquely combine TC strategies in ways that require further evaluation. Factor analysis provides a logical method for grouping such strategies for comparative effectiveness analysis when the groups are dependent. Our findings provide hospitals and health systems 1) information about what groups of TC strategies are commonly being implemented by hospitals, 2) strengths associated with the factor analysis approach for classifying these groups, and ultimately, 3) information upon which comparative effectiveness trials can be designed. Our results further reveal promising targets for comparative effectiveness analyses, including groups incorporating cross-setting information exchange.
2012 年启动医院再入院率削减计划(HRRP)后,全国医院广泛尝试实施过渡护理(TC)策略,以减少医院再入院率。尽管存在许多基于证据的 TC 模式,但它们通常会根据当地情况进行调整,这使得大规模评估变得困难。关于医院实施 TC 策略的流行模式以及哪些策略组合在改善患者结局方面最有效,几乎没有系统的证据。我们的目的是确定并定义美国众多不同类型医院实施的 TC 策略组合,或过渡护理活动组,最终目的是评估它们的相对有效性。
我们通过对短期急性护理和基层医疗机构代表的全国性网络调查(N=370)收集了 13 种 TC 策略的实施数据,并获取了参与医院出院患者的医疗保险索赔数据。通过因子分析和潜在类别分析将 TC 策略分组。
我们观察到医院实施 13 种 TC 策略的 348 种变化,突出了医院 TC 策略实施的多样性。因子分析产生了 5 个重叠的 TC 策略组,包括 1)药物重整、2)共同决策、3)识别高危患者、4)护理计划和 5)跨机构信息交换。我们确定,因子分析结果建议的组在检测 30 天再入院趋势差异方面提供了更合理的分组。此外,基于因子分析的 TC 策略组在检测再入院趋势方面比基于潜在类别分析的组表现更好。
美国医院以需要进一步评估的独特方式组合 TC 策略。当组是相互依赖时,因子分析为进行比较有效性分析对这些策略进行分组提供了一种合理的方法。我们的研究结果为医院和卫生系统提供了 1)医院普遍实施的 TC 策略组信息,2)与分类这些组的因子分析方法相关的优势,最终 3)可以在此基础上设计比较有效性试验的信息。我们的结果进一步揭示了有前途的比较有效性分析目标,包括包含跨机构信息交换的组。