Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.
Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
Sci Rep. 2021 Oct 25;11(1):21025. doi: 10.1038/s41598-021-99990-7.
Modern AI-based clinical decision support models owe their success in part to the very large number of predictors they use. Safe and robust decision support, especially for intervention planning, requires causal, not associative, relationships. Traditional methods of causal discovery, clinical trials and extracting biochemical pathways, are resource intensive and may not scale up to the number and complexity of relationships sufficient for precision treatment planning. Computational causal structure discovery (CSD) from electronic health records (EHR) data can represent a solution, however, current CSD methods fall short on EHR data. This paper presents a CSD method tailored to the EHR data. The application of the proposed methodology was demonstrated on type-2 diabetes mellitus. A large EHR dataset from Mayo Clinic was used as development cohort, and another large dataset from an independent health system, M Health Fairview, as external validation cohort. The proposed method achieved very high recall (.95) and substantially higher precision than the general-purpose methods (.84 versus .29, and .55). The causal relationships extracted from the development and external validation cohorts had a high (81%) overlap. Due to the adaptations to EHR data, the proposed method is more suitable for use in clinical decision support than the general-purpose methods.
现代基于人工智能的临床决策支持模型之所以能够取得成功,部分原因在于它们使用了大量的预测因子。安全且稳健的决策支持,特别是干预计划,需要因果关系,而不是关联关系。传统的因果发现方法、临床试验和提取生化途径,资源密集且可能无法扩展到足以进行精确治疗计划的关系数量和复杂性。从电子健康记录 (EHR) 数据中进行计算因果结构发现 (CSD) 可以提供一种解决方案,然而,当前的 CSD 方法在 EHR 数据上存在不足。本文提出了一种专门针对 EHR 数据的 CSD 方法。该方法应用于 2 型糖尿病的研究中。使用 Mayo 诊所的大型 EHR 数据集作为开发队列,另一个来自独立健康系统 M Health Fairview 的大型数据集作为外部验证队列。所提出的方法在开发和外部验证队列中实现了非常高的召回率(.95),并且比通用方法的精度高得多(.84 对.29,.55)。从开发和外部验证队列中提取的因果关系有很高的重叠率(81%)。由于对 EHR 数据的适应,该方法比通用方法更适合用于临床决策支持。