Kummerfeld Erich, Williams Leland, Ma Sisi
Institute for Health Informatics, University of Minnesota, 516 Delaware Street SE, Minneapolis, 55455, MN, USA.
Int J Data Sci Anal. 2024 Apr;17(3):289-304. doi: 10.1007/s41060-023-00399-4. Epub 2023 Jun 27.
Causal discovery algorithms have the potential to impact many fields of science. However, substantial foundational work on the statistical properties of causal discovery algorithms is still needed. This paper presents what is to our knowledge the first method for conducting power analysis for causal discovery algorithms. The power sample characteristics of causal discovery algorithms typically cannot be described by a closed formula, but we resolve this problem by developing a new power sample analysis method based on standardized simulation experiments. Our procedure generates data with carefully controlled statistical effect sizes in order to enable an accurate numerical power sample analysis. We present that method, apply it to generate an initial power analysis table, provide a web interface for searching this table, and show how the table or web interface can be used to solve several types of real world power analysis problems, such as sample size planning, interpretation of results, and sensitivity analysis.
因果发现算法有可能影响许多科学领域。然而,仍然需要在因果发现算法的统计特性方面开展大量的基础工作。本文提出了据我们所知的第一种用于因果发现算法功效分析的方法。因果发现算法的功效样本特征通常无法用封闭公式描述,但我们通过开发一种基于标准化模拟实验的新功效样本分析方法解决了这个问题。我们的程序生成具有精心控制的统计效应大小的数据,以便能够进行准确的数值功效样本分析。我们介绍了该方法,将其应用于生成初始功效分析表,提供用于搜索此表的网络界面,并展示如何使用该表或网络界面来解决几种类型的实际功效分析问题,例如样本量规划、结果解释和敏感性分析。