Suppr超能文献

一种估算 EPID 中患者散射线的三混合方法的性能优化。

Performance optimization of a tri-hybrid method for estimation of patient scatter into the EPID.

机构信息

Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.

Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

J Appl Clin Med Phys. 2021 Nov;22(11):99-114. doi: 10.1002/acm2.13439. Epub 2021 Oct 26.

Abstract

On-treatment EPID images are contaminated with patient-generated scattered photons. If this component can be accurately estimated, its effect can be removed, and therefore a corresponding in vivo patient dose estimate will be more accurate. Our group previously developed a "tri-hybrid" (TH) algorithm to provide fast but accurate estimates of patient-generated photon scatter. The algorithm uses an analytical method to solve for singly-scattered photon fluence, a modified Monte Carlo hybrid method to solve for multiply-scattered photon fluence, and a pencil beam scatter kernel method to solve for electron interaction generated scattered photon fluence. However, for efficient clinical implementation, spatial and energy sampling must be optimized for speed while maintaining overall accuracy. In this work, the most significant sampling issues were examined, including spatial sampling settings for the patient voxel size, the number of Monte Carlo histories used in the modified hybrid MC method, scatter order sampling for the hybrid method, and also a range of energy spectrum sampling (i.e., energy bin sizes). The total predicted patient-scattered photon fluence entering the EPID was compared with full MC simulation (EGSnrc) for validation. Three phantoms were tested with 6 and 18 MV beam energies, field sizes of 4 × 4, 10 × 10, and 20 × 20 cm , and source-to-imager distance of 140 cm to develop a set of optimal sampling settings. With the recommended sampling, accuracy and precision of the total-scattered energy fluence of the TH patient scatter prediction method are within 0.9% and 1.2%, respectively, for all test cases compared with full MC simulation results. For the mean energy spectrum across the imaging plane, comparison of TH with full MC simulation showed 95% overlap. This study has optimized sampling settings so that they have minimal impact on patient scatter prediction accuracy while maintaining maximum execution speed, a critical step for future clinical implementation.

摘要

治疗中 EPID 图像受到患者产生的散射光子的污染。如果能够准确估计这个分量,可以去除其影响,从而更准确地估算体内患者剂量。我们小组之前开发了一种“三混合”(TH)算法,可快速但准确地估算患者产生的散射光子。该算法使用解析方法求解单次散射光子的剂量,使用修正的蒙特卡罗混合方法求解多次散射光子的剂量,使用铅笔束散射核方法求解电子相互作用产生的散射光子的剂量。然而,为了高效地应用于临床,需要在保持整体准确性的同时,优化空间和能量采样以提高速度。在这项工作中,检查了最重要的采样问题,包括用于患者体素大小的空间采样设置、修正的混合 MC 方法中使用的蒙特卡罗历史数量、混合方法的散射阶采样以及一系列能谱采样(即能量-bin 大小)。通过与全蒙特卡罗模拟(EGSnrc)比较来验证总预测的患者散射光子进入 EPID 的剂量。用 6 和 18 MV 射线能量、4×4、10×10 和 20×20 cm 的射野大小、源到成像仪距离为 140 cm 的三个体模进行测试,以开发一套最佳采样设置。对于推荐的采样,TH 患者散射预测方法的总散射能剂量的准确性和精密度在与全蒙特卡罗模拟结果比较时,在所有测试案例中分别在 0.9%和 1.2%以内。对于成像平面上的平均能谱,TH 与全蒙特卡罗模拟的比较显示 95%的重叠。本研究优化了采样设置,使其对患者散射预测精度的影响最小,同时保持最大的执行速度,这是未来临床实施的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e5d/8598147/e02d823c0e3a/ACM2-22-99-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验