Department of Emergency, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China.
Department of Cardiology, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, China.
Bioengineered. 2021 Dec;12(1):9070-9080. doi: 10.1080/21655979.2021.1981799.
Type 2 diabetes (T2D)-related neurological complication is the risk factor for neurodegenerative disorders. The pathological changes from T2D-caused blood-brain barrier (BBB) dysfunction plays a critical role in developing neurodegeneration. The hyper-activation of the Angiotensin II type 1 receptor (AT1R) in the brain is associated with neurovascular impairment. The AT1R antagonist Valsartan is commonly prescribed to control high blood pressure, heart failure, and diabetic kidney diseases. In this study, we investigated the beneficial effects of Valsartan in db/db diabetic mice and isolated brain endothelial cells. We showed that 2 weeks of Valsartan administration (30 mg/Kg body weight) mitigated the increased permeability of the brain-blood barrier and the reduction of gap junction proteins VE-Cadherin and Claudin 2. In human brain microvascular cells (HBMVECs), we found that Valsartan treatment ameliorated high glucose-induced hyperpermeability by measuring Dextran uptake and transendothelial electrical resistance (TEER). Furthermore, Valsartan treatment recovered high glucose-repressed endothelial VE-Cadherin and Claudin 2 expression. Moreover, Valsartan significantly suppressed the expressions of pro-inflammatory cytokines such as macrophage chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) against high glucose. Mechanistically, Valsartan ameliorated high glucose-repressed endothelial cAMP-responsive element-binding protein (CREB) signaling activation. The blockage of CREB activation by PKA inhibitor H89 abolished the action of Valsartan, suggesting its dependence on CREB signaling. In conclusion, Valsartan shows a neuroprotective effect in diabetic mice by ameliorating BBB dysfunction. These effects of Valsartan require cellular CREB signaling in brain endothelial cells.
2 型糖尿病(T2D)相关的神经并发症是神经退行性疾病的危险因素。T2D 引起的血脑屏障(BBB)功能障碍的病理变化在神经退行性变的发展中起着关键作用。大脑中血管紧张素 II 型 1 型受体(AT1R)的过度激活与神经血管损伤有关。血管紧张素 II 受体拮抗剂缬沙坦常用于控制高血压、心力衰竭和糖尿病肾病。在这项研究中,我们研究了缬沙坦对 db/db 糖尿病小鼠和离体脑内皮细胞的有益作用。我们发现,2 周的缬沙坦给药(30mg/kg 体重)减轻了血脑屏障通透性的增加和缝隙连接蛋白 VE-钙粘蛋白和 Claudin 2 的减少。在人脑微血管细胞(HBMVECs)中,我们发现缬沙坦通过测量葡聚糖摄取和跨内皮电阻(TEER)来改善高葡萄糖诱导的高通透性。此外,缬沙坦治疗恢复了高葡萄糖抑制的内皮 VE-钙粘蛋白和 Claudin 2 的表达。此外,缬沙坦显著抑制了促炎细胞因子如巨噬细胞趋化蛋白-1(MCP-1)和白细胞介素-6(IL-6)的表达,对抗高葡萄糖。在机制上,缬沙坦改善了高葡萄糖抑制的内皮 cAMP 反应元件结合蛋白(CREB)信号激活。PKA 抑制剂 H89 阻断 CREB 激活消除了缬沙坦的作用,表明其依赖于 CREB 信号。总之,缬沙坦通过改善 BBB 功能障碍在糖尿病小鼠中表现出神经保护作用。缬沙坦的这些作用需要脑内皮细胞中的细胞 CREB 信号。