Suppr超能文献

样本量对植物单细胞 RNA 分析的影响。

Effects of Sample Size on Plant Single-Cell RNA Profiling.

机构信息

Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310027, China.

State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.

出版信息

Curr Issues Mol Biol. 2021 Oct 20;43(3):1685-1697. doi: 10.3390/cimb43030119.

Abstract

Single-cell RNA (scRNA) profiling or scRNA-sequencing (scRNA-seq) makes it possible to parallelly investigate diverse molecular features of multiple types of cells in a given plant tissue and discover cell developmental processes. In this study, we evaluated the effects of sample size (i.e., cell number) on the outcome of single-cell transcriptome analysis by sampling different numbers of cells from a pool of ~57,000 root cells integrated from five published studies. Our results indicated that the most significant principal components could be achieved when 20,000-30,000 cells were sampled, a relatively high reliability of cell clustering could be achieved by using ~20,000 cells with little further improvement by using more cells, 96% of the differentially expressed genes could be successfully identified with no more than 20,000 cells, and a relatively stable pseudotime could be estimated in the subsample with 5000 cells. Finally, our results provide a general guide for optimizing sample size to be used in plant scRNA-seq studies.

摘要

单细胞 RNA(scRNA)分析或 scRNA 测序(scRNA-seq)使得在给定的植物组织中同时研究多种类型细胞的不同分子特征并发现细胞发育过程成为可能。在这项研究中,我们通过从五个已发表的研究中整合的约 57,000 个根细胞的池中抽取不同数量的细胞,评估了样本量(即细胞数量)对单细胞转录组分析结果的影响。我们的结果表明,当采集 20,000-30,000 个细胞时,可以获得最显著的主成分,可以使用约 20,000 个细胞获得细胞聚类的相对较高的可靠性,使用更多细胞几乎没有进一步的改进,使用不超过 20,000 个细胞可以成功识别 96%的差异表达基因,并且可以在具有 5000 个细胞的亚样本中估计相对稳定的伪时间。最后,我们的结果为优化用于植物 scRNA-seq 研究的样本量提供了一般指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e530/8929096/b325b084c201/cimb-43-00119-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验