Suppr超能文献

全并行听觉尖峰神经网络的重建与 FPGA 实现。

Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation.

出版信息

IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1320-1331. doi: 10.1109/TBCAS.2021.3122549. Epub 2022 Feb 17.

Abstract

This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μJ for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.

摘要

本文提出了一种基于现场可编程门阵列(FPGA)的听觉系统实现,该系统具有生物启发式的特点,具有鲁棒性和抗噪声能力的优势。我们提出了一种 11 通道分层尖峰神经元网络(SNN)模型的 FPGA 实现,该模型具有低功耗的稀疏连接架构。根据人类大脑听觉通路的机制,对耳蜗产生的尖峰序列进行分层 SNN 分析,并通过贝叶斯分类器识别特定的单词。使用修正的漏电积分和放电(LIF)模型来实现分层 SNN,从而实现高效率和低硬件消耗。在 FPGA 上实现的分层 SNN 使听觉系统能够高速运行,并可以与外部机器和传感器进行接口和应用。一组来自不同说话者的带有噪声的语音被用作输入来测试我们系统的性能,实验结果表明,该系统可以在存在噪声的情况下以生物上合理的方式对单词进行分类。我们系统的方法具有灵活性,可以修改成所需的规模。这些都证实了所提出的生物上合理的听觉系统为片上语音识别提供了更好的方法。与现有技术相比,我们的听觉系统在单个操作中实现了更高的速度,最大频率为 65.03 MHz,能耗更低,为 276.83 μJ。它可以应用于脑机接口和智能机器人领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验