Suppr超能文献

利用幂坐标旋转数字计算法(pow CORDIC)为大规模图像分类器的时空脉冲神经网络(SNN)设计高精度的空间幂-STDP学习模块。

Digital design of a spatial-pow-STDP learning block with high accuracy utilizing pow CORDIC for large-scale image classifier spatiotemporal SNN.

作者信息

Bahrami Mohammad Kazem, Nazari Soheila

机构信息

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, 1983969411, Iran.

出版信息

Sci Rep. 2024 Feb 9;14(1):3388. doi: 10.1038/s41598-024-54043-7.

Abstract

The paramount concern of highly accurate energy-efficient computing in machines with significant cognitive capabilities aims to enhance the accuracy and efficiency of bio-inspired Spiking Neural Networks (SNNs). This paper addresses this main objective by introducing a novel spatial power spike-timing-dependent plasticity (Spatial-Pow-STDP) learning rule as a digital block with high accuracy in a bio-inspired SNN model. Motivated by the demand for precise and accelerated computation that reduces high-cost resources in neural network applications, this paper presents a methodology based on COordinate Rotation DIgital Computer (CORDIC) definitions. The proposed designs of CORDIC algorithms for exponential (Exp CORDIC), natural logarithm (Ln CORDIC), and arbitrary power function (Pow CORDIC) are meticulously detailed and evaluated to ensure optimal acceleration and accuracy, which respectively show average errors near 10, 10, and 10 with 4, 4, and 6 iterations. The engineered architectures for the Exp, Ln, and Pow CORDIC implementations are illustrated and assessed, showcasing the efficiency achieved through high frequency, leading to the introduction of a Spatial-Pow-STDP learning block design based on Pow CORDIC that facilitates efficient and accurate hardware computation with 6.93 × 10 average error with 9 iterations. The proposed learning mechanism integrates this structure into a large-scale spatiotemporal SNN consisting of three layers with reduced hyper-parameters, enabling unsupervised training in an event-based paradigm using excitatory and inhibitory synapses. As a result, the application of the developed methodology and equations in the computational SNN model for image classification reveals superior accuracy and convergence speed compared to existing spiking networks by achieving up to 97.5%, 97.6%, 93.4%, and 93% accuracy, respectively, when trained on the MNIST, EMNIST digits, EMNIST letters, and CIFAR10 datasets with 6, 2, 2, and 6 training epochs.

摘要

在具有显著认知能力的机器中,高精度节能计算的首要关注点旨在提高受生物启发的脉冲神经网络(SNN)的准确性和效率。本文通过引入一种新颖的空间功率脉冲时间依赖可塑性(Spatial-Pow-STDP)学习规则,作为受生物启发的SNN模型中具有高精度的数字模块,来实现这一主要目标。受神经网络应用中对精确且加速计算以减少高成本资源需求的推动,本文提出了一种基于坐标旋转数字计算机(CORDIC)定义的方法。针对指数(Exp CORDIC)、自然对数(Ln CORDIC)和任意幂函数(Pow CORDIC)的CORDIC算法的拟议设计进行了精心详细阐述和评估,以确保最佳加速和准确性,在4、4和6次迭代时分别显示平均误差接近10、10和10。阐述并评估了Exp、Ln和Pow CORDIC实现的工程架构,展示了通过高频实现的效率,从而引入了基于Pow CORDIC的Spatial-Pow-STDP学习块设计,该设计在9次迭代时以6.93×10的平均误差实现了高效且准确的硬件计算。所提出的学习机制将此结构集成到一个由三层组成且超参数减少的大规模时空SNN中,能够在基于事件的范式中使用兴奋性和抑制性突触进行无监督训练。结果,在用于图像分类的计算SNN模型中应用所开发的方法和方程,与现有脉冲网络相比,在MNIST、EMNIST数字、EMNIST字母和CIFAR10数据集上分别经过6、2、2和6个训练轮次训练时,准确率分别达到97.5%、97.6%、93.4%和93%,显示出更高的准确性和收敛速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/504e/10858263/cf737a24a25a/41598_2024_54043_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验