Suppr超能文献

MTGNN:基于多任务图神经网络的少样本学习用于疾病相似性测量

MTGNN: Multi-Task Graph Neural Network based few-shot learning for disease similarity measurement.

作者信息

Gao Jianliang, Zhang Xiangchi, Tian Ling, Liu Yuxin, Wang Jianxin, Li Zhao, Hu Xiaohua

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

Alibaba Group, Hangzhou 310000, China.

出版信息

Methods. 2022 Feb;198:88-95. doi: 10.1016/j.ymeth.2021.10.005. Epub 2021 Oct 24.

Abstract

Similar diseases are usually caused by molecular origins or similar phenotypes. Confirming the relationship between diseases can help researchers gain a deep insight of the pathogenic mechanisms of emerging complex diseases, and improve the corresponding diagnoses and treatment. Therefore, similar diseases are considerably important in biology and pathology. However, the insufficient number of labelled similar disease pairs cannot support the optimal training of the models. In this paper, we propose a Multi-Task Graph Neural Network (MTGNN) framework to measure disease similarity by few-shot learning. To tackle the problem of insufficient number of labelled similar disease pairs, we design the multi-task optimization strategy to train the graph neural network for disease similarity task (lack of labelled training data) by introducing link prediction task (sufficient labelled training data). The similarity between diseases can then be obtained by measuring the distance between disease embeddings in high-dimensional space learning from the double tasks. The experiment results evaluate the performance of MTGNN and illustrate its advantages over previous methods on few labeled training dataset.

摘要

相似疾病通常由分子起源或相似表型引起。确认疾病之间的关系有助于研究人员深入了解新兴复杂疾病的致病机制,并改善相应的诊断和治疗。因此,相似疾病在生物学和病理学中相当重要。然而,标记的相似疾病对数量不足无法支持模型的优化训练。在本文中,我们提出了一种多任务图神经网络(MTGNN)框架,通过少样本学习来衡量疾病相似性。为了解决标记的相似疾病对数量不足的问题,我们设计了多任务优化策略,通过引入链接预测任务(有足够的标记训练数据)来训练用于疾病相似性任务(缺乏标记训练数据)的图神经网络。然后,通过在从双重任务学习的高维空间中测量疾病嵌入之间的距离,可以获得疾病之间的相似性。实验结果评估了MTGNN的性能,并说明了它在少量标记训练数据集上相对于先前方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验