Suppr超能文献

HealthGAT:使用图注意力网络对电子健康记录进行节点分类

HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks.

作者信息

Piya Fahmida Liza, Gupta Mehak, Beheshti Rahmatollah

机构信息

University of Delaware.

Southern Methodist University.

出版信息

IEEE Int Conf Connect Health Appl Syst Eng Technol. 2024 Jun;2024:132-141. doi: 10.1109/chase60773.2024.00022. Epub 2024 Aug 5.

Abstract

While electronic health records (EHRs) are widely used across various applications in healthcare, most applications use the EHRs in their raw (tabular) format. Relying on raw or simple data pre-processing can greatly limit the performance or even applicability of downstream tasks using EHRs. To address this challenge, we present HealthGAT, a novel graph attention network framework that utilizes a hierarchical approach to generate embeddings from EHR, surpassing traditional graph-based methods. Our model iteratively refines the embeddings for medical codes, resulting in improved EHR data analysis. We also introduce customized EHR-centric auxiliary pre-training tasks to leverage the rich medical knowledge embedded within the data. This approach provides a comprehensive analysis of complex medical relationships and offers significant advancement over standard data representation techniques. HealthGAT has demonstrated its effectiveness in various healthcare scenarios through comprehensive evaluations against established methodologies. Specifically, our model shows outstanding performance in node classification and downstream tasks such as predicting readmissions and diagnosis classifications.

摘要

虽然电子健康记录(EHR)在医疗保健的各种应用中被广泛使用,但大多数应用都使用原始(表格)格式的EHR。依赖原始或简单的数据预处理会极大地限制使用EHR的下游任务的性能,甚至适用性。为了应对这一挑战,我们提出了HealthGAT,这是一种新颖的图注意力网络框架,它采用分层方法从EHR生成嵌入,超越了传统的基于图的方法。我们的模型迭代地优化医学代码的嵌入,从而改进EHR数据分析。我们还引入了以EHR为中心的定制辅助预训练任务,以利用数据中嵌入的丰富医学知识。这种方法提供了对复杂医学关系的全面分析,并在标准数据表示技术方面取得了显著进展。通过与既定方法的全面评估,HealthGAT已在各种医疗保健场景中证明了其有效性。具体而言,我们的模型在节点分类以及预测再入院和诊断分类等下游任务中表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8349/11473143/58856487a635/nihms-2027980-f0001.jpg

相似文献

1
HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks.HealthGAT:使用图注意力网络对电子健康记录进行节点分类
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2024 Jun;2024:132-141. doi: 10.1109/chase60773.2024.00022. Epub 2024 Aug 5.
2
Multi-task heterogeneous graph learning on electronic health records.电子健康记录上的多任务异质图学习。
Neural Netw. 2024 Dec;180:106644. doi: 10.1016/j.neunet.2024.106644. Epub 2024 Aug 22.

本文引用的文献

9
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.
10
Disease Prediction via Graph Neural Networks.基于图神经网络的疾病预测。
IEEE J Biomed Health Inform. 2021 Mar;25(3):818-826. doi: 10.1109/JBHI.2020.3004143. Epub 2021 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验