Piya Fahmida Liza, Gupta Mehak, Beheshti Rahmatollah
University of Delaware.
Southern Methodist University.
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2024 Jun;2024:132-141. doi: 10.1109/chase60773.2024.00022. Epub 2024 Aug 5.
While electronic health records (EHRs) are widely used across various applications in healthcare, most applications use the EHRs in their raw (tabular) format. Relying on raw or simple data pre-processing can greatly limit the performance or even applicability of downstream tasks using EHRs. To address this challenge, we present HealthGAT, a novel graph attention network framework that utilizes a hierarchical approach to generate embeddings from EHR, surpassing traditional graph-based methods. Our model iteratively refines the embeddings for medical codes, resulting in improved EHR data analysis. We also introduce customized EHR-centric auxiliary pre-training tasks to leverage the rich medical knowledge embedded within the data. This approach provides a comprehensive analysis of complex medical relationships and offers significant advancement over standard data representation techniques. HealthGAT has demonstrated its effectiveness in various healthcare scenarios through comprehensive evaluations against established methodologies. Specifically, our model shows outstanding performance in node classification and downstream tasks such as predicting readmissions and diagnosis classifications.
虽然电子健康记录(EHR)在医疗保健的各种应用中被广泛使用,但大多数应用都使用原始(表格)格式的EHR。依赖原始或简单的数据预处理会极大地限制使用EHR的下游任务的性能,甚至适用性。为了应对这一挑战,我们提出了HealthGAT,这是一种新颖的图注意力网络框架,它采用分层方法从EHR生成嵌入,超越了传统的基于图的方法。我们的模型迭代地优化医学代码的嵌入,从而改进EHR数据分析。我们还引入了以EHR为中心的定制辅助预训练任务,以利用数据中嵌入的丰富医学知识。这种方法提供了对复杂医学关系的全面分析,并在标准数据表示技术方面取得了显著进展。通过与既定方法的全面评估,HealthGAT已在各种医疗保健场景中证明了其有效性。具体而言,我们的模型在节点分类以及预测再入院和诊断分类等下游任务中表现出色。