Suppr超能文献

MNet:一种基于跨阶段非局部注意力的多阶段胰腺分割多尺度多视图框架。

MNet: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention.

作者信息

Qu Taiping, Wang Xiheng, Fang Chaowei, Mao Li, Li Juan, Li Ping, Qu Jinrong, Li Xiuli, Xue Huadan, Yu Yizhou, Jin Zhengyu

机构信息

AI Lab, Deepwise Healthcare, Beijing 100080, China.

Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing 100730, China.

出版信息

Med Image Anal. 2022 Jan;75:102232. doi: 10.1016/j.media.2021.102232. Epub 2021 Oct 13.

Abstract

The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents MNet, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of MNet is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.

摘要

CT动脉期和静脉期视觉信息的互补有助于更好地将胰腺与其周围结构区分开来。然而,在计算机辅助胰腺分割中,跨期上下文信息的探索仍在研究中。本文提出了MNet,这是一个为多期胰腺分割集成多尺度多视图信息的框架。MNet的核心基于双路径网络构建,其中为两个阶段分别设置了独立的分支。引入了跨期交互连接来桥接两个分支,以交错和整合双期互补视觉信息。此外,我们进一步设计了两种非局部注意力模块,以增强跨期的高级特征表示。首先,我们设计了一个位置注意力模块,以生成跨期可靠的特征相关性,从而抑制错位区域。其次,深度注意力模块用于捕获通道依赖性,进而强化特征表示。实验数据包括224例内部CT(106例正常,118例异常),切片厚度为1毫米,以及66例外部CT(29例正常,37例异常),切片厚度为5毫米。我们在内部数据上以91.19%的平均DSC取得了新的最优性能,在外部数据上以86.34%的平均DSC取得了良好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验