Suppr超能文献

用于3D医学分割的面向数据的八叉树逆层次顺序聚合混合Transformer-CNN

Data-Oriented Octree Inverse Hierarchical Order Aggregation Hybrid Transformer-CNN for 3D Medical Segmentation.

作者信息

Li Yuhua, Jiang Shan, Yang Zhiyong, Wang Lixiang, Wang Liwen, Zhou Zeyang

机构信息

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

出版信息

J Imaging Inform Med. 2025 Jan 7. doi: 10.1007/s10278-024-01299-0.

Abstract

The hybrid CNN-transformer structures harness the global contextualization of transformers with the local feature acuity of CNNs, propelling medical image segmentation to the next level. However, the majority of research has focused on the design and composition of hybrid structures, neglecting the data structure, which enhance segmentation performance, optimize resource efficiency, and bolster model generalization and interpretability. In this work, we propose a data-oriented octree inverse hierarchical order aggregation hybrid transformer-CNN (nnU-OctTN), which focuses on delving deeply into the data itself to identify and harness potential. The nnU-OctTN employs the U-Net as a foundational framework, with the node aggregation transformer serving as the encoder. Data features are stored within an octree data structure with each node computed autonomously yet interconnected through a block-to-block local information exchange mechanism. Oriented towards multi-resolution feature data map learning, a cross-fusion module has been designed that associates the encoder and decoder in a staggered vertical and horizontal approach. Inspired by nnUNet, our framework automatically adapts network parameters to the dataset instead of using pre-trained weights for initialization. The nnU-OctTN method was evaluated on the BTCV, ACDC, and BraTS datasets and achieved excellent performance with dice score coefficient (DSC) 86.95, 92.82, and 90.61, respectively, demonstrating its generalizability and effectiveness. Cross-fusion module effectiveness and model scalability are validated through ablation experiments on BTCV and Kidney. Extensive qualitative and quantitative experimental results demonstrate that nnU-OctTN achieves high-quality 3D medical segmentation that has competitive performance against current state-of-the-art methods, providing a promising idea for clinical applications.

摘要

混合卷积神经网络-Transformer结构利用了Transformer的全局上下文信息和卷积神经网络的局部特征敏锐度,将医学图像分割提升到了一个新的水平。然而,大多数研究都集中在混合结构的设计和组成上,而忽略了数据结构,数据结构可以提高分割性能、优化资源效率,并增强模型的泛化能力和可解释性。在这项工作中,我们提出了一种面向数据的八叉树逆层次顺序聚合混合Transformer-卷积神经网络(nnU-OctTN),该方法专注于深入研究数据本身以识别和利用潜在信息。nnU-OctTN采用U-Net作为基础框架,节点聚合Transformer作为编码器。数据特征存储在八叉树数据结构中,每个节点自主计算,但通过块到块的局部信息交换机制相互连接。针对多分辨率特征数据图学习,设计了一个交叉融合模块,该模块以交错的垂直和水平方式关联编码器和解码器。受nnUNet的启发,我们的框架自动使网络参数适应数据集,而不是使用预训练权重进行初始化。nnU-OctTN方法在BTCV、ACDC和BraTS数据集上进行了评估,分别以86.95、92.82和90.61的骰子相似系数(DSC)取得了优异的性能,证明了其泛化能力和有效性。通过在BTCV和肾脏数据集上的消融实验验证了交叉融合模块的有效性和模型的可扩展性。广泛的定性和定量实验结果表明,nnU-OctTN实现了高质量的3D医学分割,与当前的先进方法相比具有竞争力,为临床应用提供了一个有前景的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验