Suppr超能文献

非另一双注意力U-Net变压器(NNDA-UNETR):一种即插即用的并行双注意力模块,用于U-Net,带有用于医学图像分割的增强残差块。

Not Another Dual Attention UNet Transformer (NNDA-UNETR): a plug-and-play parallel dual attention block in U-Net with enhanced residual blocks for medical image segmentation.

作者信息

Cao Lei, Zhang Qikai, Fan Chunjiang, Cao Yongnian

机构信息

Department of Artificial Intelligence, Shanghai Maritime University, Shanghai, China.

Department of Rehabilitation Medicine, Wuxi Rehabilitation Hospital, Wuxi, China.

出版信息

Quant Imaging Med Surg. 2024 Dec 5;14(12):9169-9192. doi: 10.21037/qims-24-833. Epub 2024 Nov 29.

Abstract

BACKGROUND

Medical image segmentation is crucial for clinical diagnostics and treatment planning. Recently, hybrid models often neglect the local modeling capabilities of Transformers for medical image segmentation, despite the complementary nature of local information from both convolutional neural networks (CNNs) and transformers. This limitation is particularly problematic in multi-organ segmentation, where organs are closely adhered, and accurate delineation is essential. This study aims to develop a novel method that leverages the strengths of both CNNs and transformers to address the challenges of segmenting multiple closely adhered organs, improving accuracy and robustness in multi-organ segmentation.

METHODS

In this study, we present the Not Another Dual Attention block (NNDA-block), a versatile, plug-and-play module that seamlessly integrates channel and spatial attention mechanisms. This block can be incorporated at any stage within the Not Another Dual Attention UNet Transformer (NNDA-UNETR) framework. Our novel approach to spatial attention uniquely combines local modeling, significantly reducing detail and texture loss during the up- and down-sampling processes typical in U-shaped architectures.

RESULTS

Evaluations on the Beyond the Cranial Vault (BTCV) and Automatic Cardiac Diagnosis Challenge benchmark datasets demonstrate our method's effectiveness in balancing model complexity with accuracy. On the BTCV dataset, our model sets new state-of-the-art benchmarks, achieving a Dice similarity coefficient of 84.13%, normalized surface dice of 86.96%, mean average surface distance of 3.46 mm, and an Hausdorff distance at 95% of 17.76 mm. Moreover, it reduces the parameter count by 34.2% compared to leading contemporary methods, all while maintaining low computational costs [measured in floating point operations per second (FLOPs)].

CONCLUSIONS

NNDA-UNETR offers a robust solution for accurate segmentation in multi-organ tasks, particularly where organ adhesion poses challenges. Its lightweight design also makes it well-suited for deployment in real-world medical environments with limited computational resources.

摘要

背景

医学图像分割对于临床诊断和治疗规划至关重要。最近,尽管卷积神经网络(CNN)和Transformer的局部信息具有互补性,但混合模型在医学图像分割中往往忽视了Transformer的局部建模能力。在多器官分割中,这种局限性尤其成问题,因为器官紧密相连,准确勾勒至关重要。本研究旨在开发一种新颖的方法,利用CNN和Transformer的优势来应对分割多个紧密相连器官的挑战,提高多器官分割的准确性和鲁棒性。

方法

在本研究中,我们提出了非另一种双注意力块(NNDA-block),这是一个通用的即插即用模块,可无缝集成通道和空间注意力机制。该块可以合并到非另一种双注意力UNet Transformer(NNDA-UNETR)框架内的任何阶段。我们独特的空间注意力方法将局部建模结合起来,显著减少了U形架构中典型的上采样和下采样过程中的细节和纹理损失。

结果

在颅外(BTCV)和自动心脏诊断挑战基准数据集上的评估证明了我们的方法在平衡模型复杂性和准确性方面的有效性。在BTCV数据集上,我们的模型设定了新的最先进基准,获得了84.13%的骰子相似系数、86.96%的归一化表面骰子、3.46毫米的平均表面距离以及95%时17.76毫米的豪斯多夫距离。此外,与领先的当代方法相比,它将参数数量减少了34.2%,同时保持了较低的计算成本[以每秒浮点运算(FLOPs)衡量]。

结论

NNDA-UNETR为多器官任务中的准确分割提供了一个强大的解决方案,特别是在器官粘连带来挑战的情况下。其轻量级设计也使其非常适合在计算资源有限的现实世界医疗环境中部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/654b/11652065/6fb1fd41c774/qims-14-12-9169-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验