Suppr超能文献

通过空间相似性感知学习和融合深度多项式网络进行强迫症诊断。

Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network.

机构信息

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Marshall Laboratory of Biomedical Engineering, AI Research Center for Medical Image Analysis and Diagnosis, Shenzhen University, Shenzhen 518060, China.

Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.

出版信息

Med Image Anal. 2022 Jan;75:102244. doi: 10.1016/j.media.2021.102244. Epub 2021 Sep 29.

Abstract

Obsessive-compulsive disorder (OCD) is a type of hereditary mental illness, which seriously affect the normal life of the patients. Sparse learning has been widely used in detecting brain diseases objectively by removing redundant information and retaining monitor valuable biological characteristics from the brain functional connectivity network (BFCN). However, most existing methods ignore the relationship between brain regions in each subject. To solve this problem, this paper proposes a spatial similarity-aware learning (SSL) model to build BFCNs. Specifically, we embrace the spatial relationship between adjacent or bilaterally symmetric brain regions via a smoothing regularization term in the model. We develop a novel fused deep polynomial network (FDPN) model to further learn the powerful information and attempt to solve the problem of curse of dimensionality using BFCN features. In the FDPN model, we stack a multi-layer deep polynomial network (DPN) and integrate the features from multiple output layers via the weighting mechanism. In this way, the FDPN method not only can identify the high-level informative features of BFCN but also can solve the problem of curse of dimensionality. A novel framework is proposed to detect OCD and unaffected first-degree relatives (UFDRs), which combines deep learning and traditional machine learning methods. We validate our algorithm in the resting-state functional magnetic resonance imaging (rs-fMRI) dataset collected by the local hospital and achieve promising performance.

摘要

强迫症(OCD)是一种遗传性精神疾病,严重影响患者的正常生活。稀疏学习已广泛用于通过去除冗余信息并从脑功能连接网络(BFCN)中保留有价值的生物特征来客观地检测脑疾病。然而,大多数现有方法忽略了每个主体中脑区域之间的关系。为了解决这个问题,本文提出了一种空间相似性感知学习(SSL)模型来构建 BFCN。具体来说,我们通过模型中的平滑正则化项来拥抱相邻或双侧对称脑区域之间的空间关系。我们开发了一种新颖的融合深度多项式网络(FDPN)模型来进一步学习强大的信息,并尝试使用 BFCN 特征解决维度诅咒问题。在 FDPN 模型中,我们堆叠了多层深度多项式网络(DPN),并通过加权机制整合来自多个输出层的特征。这样,FDPN 方法不仅可以识别 BFCN 的高级信息特征,还可以解决维度诅咒问题。提出了一种新的框架来检测强迫症和未受影响的一级亲属(UFDR),该框架结合了深度学习和传统机器学习方法。我们在当地医院收集的静息态功能磁共振成像(rs-fMRI)数据集上验证了我们的算法,并取得了有希望的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验