ATR Brain Information Communication Research Laboratory Group, Kyoto, 619-0288, Japan.
Graduate School of Information Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
Sci Rep. 2017 Aug 8;7(1):7538. doi: 10.1038/s41598-017-07792-7.
Obsessive-compulsive disorder (OCD) is a common psychiatric disorder with a lifetime prevalence of 2-3%. Recently, brain activity in the resting state is gathering attention for exploring altered functional connectivity in psychiatric disorders. Although previous resting-state functional magnetic resonance imaging studies investigated the neurobiological abnormalities of patients with OCD, there are concerns that should be addressed. One concern is the validity of the hypothesis employed. Most studies used seed-based analysis of the fronto-striatal circuit, despite the potential for abnormalities in other regions. A hypothesis-free study is a promising approach in such a case, while it requires researchers to handle a dataset with large dimensions. Another concern is the reliability of biomarkers derived from a single dataset, which may be influenced by cohort-specific features. Here, our machine learning algorithm identified an OCD biomarker that achieves high accuracy for an internal dataset (AUC = 0.81; N = 108) and demonstrates generalizability to an external dataset (AUC = 0.70; N = 28). Our biomarker was unaffected by medication status, and the functional networks contributing to the biomarker were distributed widely, including the frontoparietal and default mode networks. Our biomarker has the potential to deepen our understanding of OCD and to be applied clinically.
强迫症(OCD)是一种常见的精神疾病,终身患病率为 2-3%。最近,静息状态下的大脑活动引起了人们的关注,以探索精神疾病中功能连接的改变。尽管之前的静息态功能磁共振成像研究已经研究了强迫症患者的神经生物学异常,但仍存在一些需要解决的问题。一个问题是所采用的假设的有效性。尽管其他区域也可能存在异常,但大多数研究仍使用基于种子的额纹状体回路分析。在这种情况下,无假设的研究是一种很有前途的方法,但它需要研究人员处理具有大维度的数据集。另一个问题是来自单个数据集的生物标志物的可靠性,这可能受到队列特定特征的影响。在这里,我们的机器学习算法确定了一个 OCD 生物标志物,该标志物在内部数据集(AUC=0.81;N=108)中具有很高的准确性,并能够推广到外部数据集(AUC=0.70;N=28)。我们的生物标志物不受药物状态的影响,并且有助于生物标志物的功能网络分布广泛,包括额顶叶和默认模式网络。我们的生物标志物有可能加深我们对强迫症的理解并应用于临床。