College of Artificial Intelligence, Yango University, Fuzhou 350015, China.
Department of Computer and Communication Engineering, Ming Chuan University, Taoyuan 333, Taiwan.
Sensors (Basel). 2020 Apr 10;20(7):2136. doi: 10.3390/s20072136.
The automatic detection of atrial fibrillation (AF) is crucial for its association with the risk of embolic stroke. Most of the existing AF detection methods usually convert 1D time-series electrocardiogram (ECG) signal into 2D spectrogram to train a complex AF detection system, which results in heavy training computation and high implementation cost. This paper proposes an AF detection method based on an end-to-end 1D convolutional neural network (CNN) architecture to raise the detection accuracy and reduce network complexity. By investigating the impact of major components of a convolutional block on detection accuracy and using grid search to obtain optimal hyperparameters of the CNN, we develop a simple, yet effective 1D CNN. Since the dataset provided by PhysioNet Challenge 2017 contains ECG recordings with different lengths, we also propose a length normalization algorithm to generate equal-length records to meet the requirement of CNN. Experimental results and analysis indicate that our method of 1D CNN achieves an average score of 78.2%, which has better detection accuracy with lower network complexity, as compared with the existing deep learning-based methods.
心房颤动(AF)的自动检测对于其与栓塞性中风风险的关联至关重要。大多数现有的 AF 检测方法通常将 1D 时间序列心电图(ECG)信号转换为 2D 频谱图,以训练复杂的 AF 检测系统,这导致了繁重的训练计算和高实施成本。本文提出了一种基于端到端 1D 卷积神经网络(CNN)架构的 AF 检测方法,以提高检测精度并降低网络复杂性。通过研究卷积块的主要组成部分对检测精度的影响,并使用网格搜索获得 CNN 的最优超参数,我们开发了一种简单而有效的 1D CNN。由于 PhysioNet Challenge 2017 提供的数据集包含长度不同的 ECG 记录,我们还提出了一种长度归一化算法,以生成等长记录,以满足 CNN 的要求。实验结果和分析表明,与现有的基于深度学习的方法相比,我们的 1D CNN 方法的平均得分为 78.2%,具有更高的检测精度和更低的网络复杂性。