Suppr超能文献

使用一维卷积神经网络检测心房颤动。

Detection of Atrial Fibrillation Using 1D Convolutional Neural Network.

机构信息

College of Artificial Intelligence, Yango University, Fuzhou 350015, China.

Department of Computer and Communication Engineering, Ming Chuan University, Taoyuan 333, Taiwan.

出版信息

Sensors (Basel). 2020 Apr 10;20(7):2136. doi: 10.3390/s20072136.

Abstract

The automatic detection of atrial fibrillation (AF) is crucial for its association with the risk of embolic stroke. Most of the existing AF detection methods usually convert 1D time-series electrocardiogram (ECG) signal into 2D spectrogram to train a complex AF detection system, which results in heavy training computation and high implementation cost. This paper proposes an AF detection method based on an end-to-end 1D convolutional neural network (CNN) architecture to raise the detection accuracy and reduce network complexity. By investigating the impact of major components of a convolutional block on detection accuracy and using grid search to obtain optimal hyperparameters of the CNN, we develop a simple, yet effective 1D CNN. Since the dataset provided by PhysioNet Challenge 2017 contains ECG recordings with different lengths, we also propose a length normalization algorithm to generate equal-length records to meet the requirement of CNN. Experimental results and analysis indicate that our method of 1D CNN achieves an average score of 78.2%, which has better detection accuracy with lower network complexity, as compared with the existing deep learning-based methods.

摘要

心房颤动(AF)的自动检测对于其与栓塞性中风风险的关联至关重要。大多数现有的 AF 检测方法通常将 1D 时间序列心电图(ECG)信号转换为 2D 频谱图,以训练复杂的 AF 检测系统,这导致了繁重的训练计算和高实施成本。本文提出了一种基于端到端 1D 卷积神经网络(CNN)架构的 AF 检测方法,以提高检测精度并降低网络复杂性。通过研究卷积块的主要组成部分对检测精度的影响,并使用网格搜索获得 CNN 的最优超参数,我们开发了一种简单而有效的 1D CNN。由于 PhysioNet Challenge 2017 提供的数据集包含长度不同的 ECG 记录,我们还提出了一种长度归一化算法,以生成等长记录,以满足 CNN 的要求。实验结果和分析表明,与现有的基于深度学习的方法相比,我们的 1D CNN 方法的平均得分为 78.2%,具有更高的检测精度和更低的网络复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df72/7180882/6e2887578c1f/sensors-20-02136-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验