Suppr超能文献

基因组简化、可塑性和代谢多样性可区分共生的有毒和无毒蓝藻菌株。

Genome Streamlining, Plasticity, and Metabolic Versatility Distinguish Co-occurring Toxic and Nontoxic Cyanobacterial Strains of .

机构信息

School of Biological Sciences, The University of Aucklandgrid.9654.e, Auckland, New Zealand.

Cawthron Institute, Nelson, New Zealand.

出版信息

mBio. 2021 Oct 26;12(5):e0223521. doi: 10.1128/mBio.02235-21.

Abstract

Harmful cyanobacterial bloom occurrences have increased worldwide due to climate change and eutrophication, causing nuisance and animal deaths. Species from the benthic cyanobacterial genus are ubiquitous and form thick mats in freshwater systems, such as rivers, that are sometimes toxic due to the production of potent neurotoxins (anatoxins). Anatoxin-producing (toxic) strains typically coexist with non-anatoxin-producing (nontoxic) strains in mats, although the reason for this is unclear. To determine the genetic mechanisms differentiating toxic and nontoxic , we sequenced and assembled genomes from 11 cultures and compared these to another 31 genomes. Average nucleotide identities (ANI) indicate that toxic and nontoxic strains are distinct species (ANI, <95%), and only 6% of genes are shared across all 42 genomes, suggesting a high level of genetic divergence among strains. Comparative genomics showed substantial genome streamlining in toxic strains and a potential dependency on external sources for thiamine and sucrose. Toxic and nontoxic strains are further differentiated by an additional set of putative nitrate transporter (nitrogen uptake) and cyanophycin (carbon and nitrogen storage) genes, respectively. These genes likely confer distinct competitive advantages based on nutrient availability and suggest nontoxic strains are more robust to nutrient fluctuations. Nontoxic strains also possess twice as many transposable elements, potentially facilitating greater genetic adaptation to environmental changes. Our results offer insights into the divergent evolution of strains and the potential for cooperative and competitive interactions that contribute to the co-occurrence of toxic and nontoxic species within mats. Microcoleus autumnalis, and closely related species, compose a geographically widespread group of freshwater benthic cyanobacteria. Canine deaths due to anatoxin-a poisoning, following exposure to toxic proliferations, have been reported globally. While proliferations are on the rise, the mechanisms underpinning competition between, or coexistence of, toxic and nontoxic strains are unknown. This study identifies substantial genetic differences between anatoxin-producing and non-anatoxin-producing strains, pointing to reduced metabolic flexibility in toxic strains, and potential dependence on cohabiting nontoxic strains. Results provide insights into the metabolic and evolutionary differences between toxic and nontoxic , which may assist in predicting and managing aquatic proliferations.

摘要

由于气候变化和富营养化,有害的蓝藻水华在全球范围内的发生有所增加,导致滋扰和动物死亡。来自底栖蓝藻属的物种无处不在,在淡水系统(如河流)中形成厚厚的垫子,有时由于产生强效神经毒素(anatoxins)而具有毒性。产anatoxin(有毒)的菌株通常与垫子中的非产anatoxin(无毒)菌株共存,尽管其原因尚不清楚。为了确定区分有毒和无毒菌株的遗传机制,我们对 11 个培养物的基因组进行了测序和组装,并将这些基因组与另外 31 个基因组进行了比较。平均核苷酸同一性(ANI)表明有毒和无毒菌株是不同的物种(ANI,<95%),并且只有 6%的基因在所有 42 个基因组中共享,这表明菌株之间存在高水平的遗传分化。比较基因组学表明,有毒菌株的基因组明显简化,并且可能依赖于外部来源的硫胺素和蔗糖。有毒和无毒菌株还分别通过另一组推定的硝酸盐转运体(氮吸收)和藻青素(碳和氮储存)基因进一步分化。这些基因可能根据营养可用性赋予不同的竞争优势,并表明无毒菌株对营养波动的抵抗力更强。无毒菌株还具有两倍数量的转座元件,可能有助于更好地适应环境变化。我们的研究结果为 菌株的分化进化提供了深入的了解,并为毒菌株和无毒菌株之间的合作和竞争相互作用提供了潜在的见解,这些相互作用有助于垫子中有毒和无毒物种的共存。秋生微鞘藻和密切相关的 物种组成了一个地理上广泛分布的淡水底栖蓝藻群。据报道,在接触有毒增殖物后,犬类因 anatoxin-a 中毒而死亡。虽然增殖物的数量在增加,但有毒和无毒菌株之间竞争或共存的机制尚不清楚。本研究确定了产 anatoxin 和非产 anatoxin 菌株之间的大量遗传差异,表明有毒菌株的代谢灵活性降低,并且可能依赖于共存的无毒菌株。研究结果提供了对有毒和无毒菌株之间代谢和进化差异的深入了解,这可能有助于预测和管理水生增殖物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25f7/8546630/8323f97d4e56/mbio.02235-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验