Suppr超能文献

具有不同频率因果变异的阈性状全基因组关联研究的统计功效。

The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants.

机构信息

Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran.

出版信息

Genetica. 2022 Feb;150(1):51-57. doi: 10.1007/s10709-021-00140-8. Epub 2021 Oct 27.

Abstract

This study aimed to investigate the effects of incidence rate, heritability, and polygenic variance on the statistical power of genome-wide association studies (GWAS) for threshold traits. Different incidence rates of threshold trait (1, 3, 5, 10, 25, 40, 50, 60, 75 and 90%), heritability (10 and 25%), and polygenic variance ratio (0 and 25%) were simulated separately for common (MAF ≥ 0.05), low-frequency (0.05 > MAF ≥ 0.01), and rare (MAF < 0.01) variants. Association studies were performed by logistic and linear mixed models. The highest statistical powers were observed in common and low-frequency variants with an incidence of 25-50% and 10-40%, respectively, but for rare variants, the highest statistical power was observed at low incidence. For all causal variant frequencies, the estimated heritability decline with an increase in incidence rate. We found high statistical power for traits with high heritability. In contrast, those with a high polygenic variance ratio have lower statistical power to detect common causal variants using a linear mixed model. These results demonstrate that the incidence rate of threshold traits, heritability, and polygenic variance may affect the statistical power of GWAS. Therefore, it is recommended that the effect of incidence rate, heritability, and polygenic variance be considered in designing GWAS for threshold traits.

摘要

本研究旨在探讨发病率、遗传度和多基因方差对阈性状全基因组关联研究(GWAS)统计功效的影响。分别模拟了阈性状(1、3、5、10、25、40、50、60、75 和 90%)、遗传度(10%和 25%)和多基因方差比(0%和 25%)不同发病率的情况。通过逻辑斯蒂回归和线性混合模型进行关联研究。在常见(MAF≥0.05)、低频(0.05>MAF≥0.01)和罕见(MAF<0.01)变异体中,发病率为 25%-50%和 10%-40%时,观察到最高的统计功效,但对于罕见变异体,最低发病率时观察到最高的统计功效。对于所有因果变异频率,遗传度随发病率的增加而下降。我们发现高遗传度的性状具有较高的统计功效。相反,高多基因方差比的性状使用线性混合模型检测常见因果变异的统计功效较低。这些结果表明,阈性状的发病率、遗传度和多基因方差可能会影响 GWAS 的统计功效。因此,建议在设计阈性状的 GWAS 时考虑发病率、遗传度和多基因方差的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验