Suppr超能文献

通过天然热带森林再生预测景观尺度的生物多样性恢复。

Predicting landscape-scale biodiversity recovery by natural tropical forest regrowth.

作者信息

Prieto Pablo V, Bukoski Jacob J, Barros Felipe S M, Beyer Hawthorne L, Iribarrem Alvaro, Brancalion Pedro H S, Chazdon Robin L, Lindenmayer David B, Strassburg Bernardo B N, Guariguata Manuel R, Crouzeilles Renato

机构信息

Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifícia Universidade Católica, Rio de Janeiro, Brazil.

The Betty and Gordon Moore Center for Science, Conservation International, Arlington, Virginia, USA.

出版信息

Conserv Biol. 2022 Jun;36(3):e13842. doi: 10.1111/cobi.13842. Epub 2022 Apr 20.

Abstract

Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9-51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.

摘要

天然森林再生是一种具有成本效益的、基于自然的生物多样性恢复解决方案,但不同的社会环境因素可能导致不同的结果。森林恢复规划中的一个关键知识空白是如何预测天然森林再生可能在何处带来高水平的生物多样性恢复,这是保护价值和潜在提供多种生态系统服务的一个指标。我们试图预测和绘制热带和亚热带次生林中脊椎动物、无脊椎动物和植物的物种丰富度和总丰度的景观尺度恢复情况,以为空间恢复规划提供信息。首先,我们进行了一项全球荟萃分析,以量化次生林中物种丰富度和总丰度的恢复与同一景观中参考老龄森林的生物多样性价值的偏离程度。其次,我们采用了一种机器学习算法和一套全面的社会环境因素来对景观尺度的偏差进行空间预测并绘制地图。模型平均解释了观测到的恢复变化的34%(范围为9%-51%)。基于社会环境景观因素(人口统计学、土地利用和覆盖、人为和自然干扰、生态系统生产力以及地形和土壤化学)对次生林中景观尺度的生物多样性恢复进行了空间预测;脊椎动物(中位数范围调整后的预测偏差为0.09对0.34)和无脊椎动物(0.2对0.35)的物种丰富度的恢复明显高于总丰度,但植物并非如此(两种指标的恢复情况相似[0.24对0.25]);植物和脊椎动物物种的总丰度呈正相关(皮尔逊相关系数r = 0.45,p = 0.001)。我们的方法有助于识别通过天然森林再生实现生物多样性恢复潜力高的热带和亚热带森林景观。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验