IEEE Trans Neural Syst Rehabil Eng. 2021;29:2271-2280. doi: 10.1109/TNSRE.2021.3123630. Epub 2021 Nov 9.
Neural information decomposed from electromyography (EMG) signals provides a new path of EMG-based human-machine interface. Instead of the motor unit decomposition-based method, this work presents a novel neural interface for human gait tracking based on muscle synergy, the high-level neural control information to collaborate muscle groups for performing movements. Three classical synergy extraction approaches include Principle Component Analysis (PCA), Factor Analysis (FA), and Nonnegative Matrix Factorization (NMF), are employed for muscle synergy extraction. A deep regression neural network based on the bidirectional gated recurrent unit (BGRU) is used to extract temporal information from the synergy matrix to estimate joint angles of the lower limb. Eight subjects participated in the experiment while walking at four types of speed: 0.5km/h, 1.0km/h, 2.0km/h, and 3.0km/h. Two machine learning methods based on linear regression (LR) and multilayer perceptron (MLP) are set as the contrast group. The result shows that the synergy-based approach's performance outperforms two contrast methods with R scores of 0.83~0.88. PCA reaches the highest performance of 0.871±0.029, corresponding to RMSE of 3.836°, 6.278°, 2.197° for hip, knee, and ankle, respectively. The effect of walking speed, synergy number, and joint location will be analyzed. The performance shows that muscle synergy has a good correlation will joint angles which can be unearthed by deep learning. The proposed method explores a new way for gait analysis and contributes to building a novel neural interface with muscle synergy and deep learning.
从肌电图 (EMG) 信号中分解出的神经信息为基于肌电图的人机接口提供了新的途径。本工作提出了一种基于肌肉协同的新型神经接口,用于人类步态跟踪,而不是基于运动单位分解的方法,肌肉协同是高级神经控制信息,用于协作肌肉群进行运动。三种经典的协同提取方法包括主成分分析 (PCA)、因子分析 (FA) 和非负矩阵分解 (NMF),用于肌肉协同提取。基于双向门控循环单元 (BGRU) 的深度回归神经网络用于从协同矩阵中提取时间信息,以估计下肢关节角度。八位受试者以 0.5km/h、1.0km/h、2.0km/h 和 3.0km/h 的四种速度行走时参与了实验。两种基于线性回归 (LR) 和多层感知器 (MLP) 的机器学习方法被设置为对照组。结果表明,基于协同的方法的性能优于两个对比方法,R 分数为 0.83~0.88。PCA 达到了最高性能 0.871±0.029,对应于髋关节、膝关节和踝关节的 RMSE 分别为 3.836°、6.278°和 2.197°。将分析行走速度、协同数和关节位置的影响。性能表明肌肉协同与关节角度具有良好的相关性,可以通过深度学习来挖掘。该方法为步态分析探索了一种新方法,为基于肌肉协同和深度学习的新型神经接口的构建做出了贡献。