Suppr超能文献

一种从临床文本中提取症状的深度语言模型及其在从社交媒体中提取 COVID-19 症状的应用。

A Deep Language Model for Symptom Extraction From Clinical Text and its Application to Extract COVID-19 Symptoms From Social Media.

出版信息

IEEE J Biomed Health Inform. 2022 Apr;26(4):1737-1748. doi: 10.1109/JBHI.2021.3123192. Epub 2022 Apr 14.

Abstract

Patients experience various symptoms when they haveeither acute or chronic diseases or undergo some treatments for diseases. Symptoms are often indicators of the severity of the disease and the need for hospitalization. Symptoms are often described in free text written as clinical notes in the Electronic Health Records (EHR) and are not integrated with other clinical factors for disease prediction and healthcare outcome management. In this research, we propose a novel deep language model to extract patient-reported symptoms from clinical text. The deep language model integrates syntactic and semantic analysis for symptom extraction and identifies the actual symptoms reported by patients and conditional or negation symptoms. The deep language model can extract both complex and straightforward symptom expressions. We used a real-world clinical notes dataset to evaluate our model and demonstrated that our model achieves superior performance compared to three other state-of-the-art symptom extraction models. We extensively analyzed our model to illustrate its effectiveness by examining each component's contribution to the model. Finally, we applied our model on a COVID-19 tweets data set to extract COVID-19 symptoms. The results show that our model can identify all the symptoms suggested by the Center for Disease Control (CDC) ahead of their timeline and many rare symptoms.

摘要

患者在患有急性或慢性疾病或接受某些疾病治疗时会经历各种症状。症状通常是疾病严重程度和住院需求的指标。症状通常以电子健康记录 (EHR) 中临床记录中编写的自由文本形式描述,并且未与其他临床因素集成以进行疾病预测和医疗保健结果管理。在这项研究中,我们提出了一种新颖的深度学习语言模型,用于从临床文本中提取患者报告的症状。该深度学习语言模型集成了句法和语义分析来进行症状提取,并识别出患者实际报告的症状以及条件或否定症状。该深度学习语言模型可以提取复杂和简单的症状表达。我们使用真实的临床记录数据集来评估我们的模型,并证明与其他三种最先进的症状提取模型相比,我们的模型具有卓越的性能。我们通过检查模型每个组件对模型的贡献,全面分析了我们的模型以说明其有效性。最后,我们将我们的模型应用于 COVID-19 推文数据集,以提取 COVID-19 症状。结果表明,我们的模型可以在疾病控制与预防中心 (CDC) 的时间线之前识别出所有建议的症状,以及许多罕见的症状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54bf/9074854/97e03d3f21ab/nihms-1798540-f0001.jpg

相似文献

引用本文的文献

1
Multilingual Virtual Healthcare Assistant.多语言虚拟医疗助手。
Health Care Sci. 2025 Jul 31;4(4):281-288. doi: 10.1002/hcs2.70031. eCollection 2025 Aug.
10
Forecasting User Interests Through Topic Tag Predictions in Online Health Communities.通过在线健康社区中的主题标签预测预测用户兴趣。
IEEE J Biomed Health Inform. 2023 Jul;27(7):3645-3656. doi: 10.1109/JBHI.2023.3271580. Epub 2023 Jun 30.

本文引用的文献

2
Clinical concept extraction using transformers.使用转换器进行临床概念提取。
J Am Med Inform Assoc. 2020 Dec 9;27(12):1935-1942. doi: 10.1093/jamia/ocaa189.
3
Mining twitter to explore the emergence of COVID-19 symptoms.挖掘推特以探索新冠病毒症状的出现。
Public Health Nurs. 2020 Nov;37(6):934-940. doi: 10.1111/phn.12809. Epub 2020 Sep 16.
5
Criteria for establishing an association between Covid-19 and hearing loss.确定新冠病毒与听力损失之间关联的标准。
Am J Otolaryngol. 2020 Nov-Dec;41(6):102658. doi: 10.1016/j.amjoto.2020.102658. Epub 2020 Aug 9.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验