Suppr超能文献

相似文献

3
Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence.
FEBS Lett. 2012 Jul 30;586(16):2389-95. doi: 10.1016/j.febslet.2012.05.052. Epub 2012 Jun 4.
4
6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met.
Biochem Biophys Res Commun. 2013 Sep 20;439(2):247-51. doi: 10.1016/j.bbrc.2013.08.048. Epub 2013 Aug 22.
5
Critical Role of 6-Phosphogluconate Dehydrogenase in TAp73-Mediated Cancer Cell Proliferation.
Mol Cancer Res. 2023 Aug 1;21(8):825-835. doi: 10.1158/1541-7786.MCR-22-0814.
6
Gambogic acid exhibits promising anticancer activity by inhibiting the pentose phosphate pathway in lung cancer mouse model.
Phytomedicine. 2024 Jul;129:155657. doi: 10.1016/j.phymed.2024.155657. Epub 2024 Apr 20.
8
10
Gambogic acid suppresses the pentose phosphate pathway by covalently inhibiting 6PGD protein in cancer cells.
Chem Commun (Camb). 2022 Aug 9;58(64):9030-9033. doi: 10.1039/d2cc03069a.

引用本文的文献

3
Metabolic Reprogramming in Response to Freund's Adjuvants: Insights from Serum Metabolomics.
Microorganisms. 2025 Feb 22;13(3):492. doi: 10.3390/microorganisms13030492.
4
New insights into T cell metabolism in liver cancer: from mechanism to therapy.
Cell Death Discov. 2025 Mar 23;11(1):118. doi: 10.1038/s41420-025-02397-w.
5
The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers.
Int J Mol Sci. 2025 Jan 13;26(2):610. doi: 10.3390/ijms26020610.
6
Tumor energy metabolism: implications for therapeutic targets.
Mol Biomed. 2024 Nov 29;5(1):63. doi: 10.1186/s43556-024-00229-4.
9
Inhibition of METTL3 in macrophages provides protection against intestinal inflammation.
Cell Mol Immunol. 2024 Jun;21(6):589-603. doi: 10.1038/s41423-024-01156-8. Epub 2024 Apr 22.
10
knockout parasites promote M1-polarizing metabolic changes.
iScience. 2023 Aug 29;26(9):107594. doi: 10.1016/j.isci.2023.107594. eCollection 2023 Sep 15.

本文引用的文献

1
Metabolic support of tumour-infiltrating regulatory T cells by lactic acid.
Nature. 2021 Mar;591(7851):645-651. doi: 10.1038/s41586-020-03045-2. Epub 2021 Feb 15.
2
CTLA-4 blockade drives loss of T stability in glycolysis-low tumours.
Nature. 2021 Mar;591(7851):652-658. doi: 10.1038/s41586-021-03326-4. Epub 2021 Feb 15.
4
A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway.
Nat Chem Biol. 2020 Jul;16(7):731-739. doi: 10.1038/s41589-020-0533-x. Epub 2020 May 11.
5
Metabolic Control of Treg Cell Stability, Plasticity, and Tissue-Specific Heterogeneity.
Front Immunol. 2019 Dec 11;10:2716. doi: 10.3389/fimmu.2019.02716. eCollection 2019.
6
Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges.
Front Immunol. 2019 Aug 27;10:1889. doi: 10.3389/fimmu.2019.01889. eCollection 2019.
7
Activation of Mevalonate Pathway via LKB1 Is Essential for Stability of T Cells.
Cell Rep. 2019 Jun 4;27(10):2948-2961.e7. doi: 10.1016/j.celrep.2019.05.020.
8
Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6546-E6555. doi: 10.1073/pnas.1720113115. Epub 2018 Jun 25.
10
Homeostatic control of metabolic and functional fitness of T cells by LKB1 signalling.
Nature. 2017 Aug 31;548(7669):602-606. doi: 10.1038/nature23665. Epub 2017 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验