University of Electronic Science and Technology of China, Chengdu 611731, China.
Magn Reson Imaging. 2022 Feb;86:135-148. doi: 10.1016/j.mri.2021.10.005. Epub 2021 Oct 25.
This paper represents a novel level set framework for segmentation of cardiac left ventricle (LV) and right ventricle (RV) from magnetic resonance images based on anatomical structures of the heart. We first propose a level set approach to recover the endocardium and epicardium of LV by using a bi-layer level set (BILLS) formulation, in which the endocardium and epicardium are represented by the 0-level set and k-level set of a level set function. Furthermore, the recovery of LV endocardium and epicardium is achieved by a level set evolution process, called convexity preserving bi-layer level set (CP-BILLS). During the CP-BILLS evolution, the 0-level set and k-level set simultaneously evolve and move toward the true endocardium and epicardium under the guidance of image information and the impact of the convexity preserving mechanism as well. To eliminate the manual selection of the k-level, we develop an algorithm for automatic selection of an optimal k-level. As a result, the obtained endocardial and epicardial contours are convex and consistent with the anatomy of cardiac ventricles. For segmentation of the whole ventricle, we extend this method to the segmentation of RV and myocardium of both left and right ventricles by using a convex shape decomposition (CSD) structure of cardiac ventricles based on anatomical knowledge. Experimental results demonstrate promising performance of our method. Compared with some traditional methods, our method exhibits superior performance in terms of segmentation accuracy and algorithm stability. Our method is comparable with the state-of-the-art deep learning-based method in terms of segmentation accuracy and algorithm stability, but our method has no need for training and the manual segmentation of the training data.
本文提出了一种基于心脏解剖结构的新颖水平集框架,用于从磁共振图像中分割心脏左心室(LV)和右心室(RV)。我们首先提出了一种基于双层水平集(BILLS)公式的水平集方法来恢复 LV 的心内膜和心外膜,其中心内膜和心外膜由水平集函数的 0 水平集和 k 水平集表示。此外,通过称为凸保持双层水平集(CP-BILLS)的水平集演化过程来实现 LV 心内膜和心外膜的恢复。在 CP-BILLS 演化过程中,0 水平集和 k 水平集在图像信息和凸保持机制的影响下同时演化并向真实的心内膜和心外膜移动。为了消除手动选择 k 水平集的需要,我们开发了一种自动选择最佳 k 水平集的算法。因此,得到的心内膜和心外膜轮廓是凸的,与心脏心室的解剖结构一致。对于整个心室的分割,我们通过使用基于解剖学知识的心脏心室的凸形状分解(CSD)结构,将这种方法扩展到 RV 和左右心室的心肌分割中。实验结果证明了我们方法的良好性能。与一些传统方法相比,我们的方法在分割准确性和算法稳定性方面具有更好的性能。与基于深度学习的最新方法相比,我们的方法在分割准确性和算法稳定性方面具有可比性,但我们的方法不需要训练,也不需要手动分割训练数据。