Suppr超能文献

基于深度监督网络和 3D-ASM 的大规模心脏 MRI 左、右心室全自动初始化和分割。

Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM.

机构信息

College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China; Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China.

College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China; Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China.

出版信息

Comput Methods Programs Biomed. 2023 Oct;240:107679. doi: 10.1016/j.cmpb.2023.107679. Epub 2023 Jun 14.

Abstract

BACKGROUND AND OBJECTIVE

The sheer volume of data generated by population imaging studies is unparalleled by current capabilities to extract objective and quantitative cardiac phenotypes; subjective and time-consuming manual image analysis remains the gold standard. Automated image analytics to compute quantitative imaging biomarkers of cardiac function are desperately needed. Data volumes and their variability pose a challenge to most state-of-the-art methods for endo- and epicardial contours, which lack robustness when applied to very large datasets. Our aim is to develop an analysis pipeline for the automatic quantification of cardiac function from cine magnetic resonance imaging data.

METHOD

This work adopt 4,638 cardiac MRI cases coming from UK Biobank with ground truth available for left and RV contours. A hybrid and robust algorithm is proposed to improve the accuracy of automatic left and right ventricle segmentation by harnessing the localization accuracy of deep learning and the morphological accuracy of 3D-ASM (three-dimensional active shape models). The contributions of this paper are three-fold. First, a fully automatic method is proposed for left and right ventricle initialization and cardiac MRI segmentation by taking full advantage of spatiotemporal constraint. Second, a deeply supervised network is introduced to train and segment the heart. Third, the 3D-ASM image search procedure is improved by combining image intensity models with convolutional neural network (CNN) derived distance maps improving endo- and epicardial edge localization.

RESULTS

The proposed architecture outperformed the state of the art for cardiac MRI segmentation from UK Biobank. The statistics of RV landmarks detection errors for Triscuspid valve and RV apex are 4.17 mm and 5.58 mm separately. The overlap metric, mean contour distance, Hausdorff distance and cardiac functional parameters are calculated for the LV (Left Ventricle) and RV (Right Ventricle) contour segmentation. Bland-Altman analysis for clinical parameters shows that the results from our automated image analysis pipelines are in good agreement with results from expert manual analysis.

CONCLUSIONS

Our hybrid scheme combines deep learning and statistical shape modeling for automatic segmentation of the LV/RV from cardiac MRI datasets is effective and robust and can compute cardiac functional indexes from population imaging.

摘要

背景与目的

人口成像研究产生的海量数据是当前提取客观、定量心脏表型的能力所无法比拟的;主观且耗时的手动图像分析仍然是金标准。迫切需要自动图像分析来计算心脏功能的定量成像生物标志物。大多数用于心内膜和心外膜轮廓的最新方法都受到数据量及其可变性的挑战,当应用于非常大的数据集时,这些方法缺乏稳健性。我们的目标是开发一种从电影磁共振成像数据中自动量化心脏功能的分析管道。

方法

本工作采用来自英国生物库的 4638 例心脏 MRI 病例,可获得左心室和 RV 轮廓的真实值。提出了一种混合且稳健的算法,通过利用深度学习的定位精度和 3D-ASM(三维主动形状模型)的形态学精度,来提高自动左心室和右心室分割的准确性。本文的贡献有三点。首先,通过充分利用时空约束,提出了一种用于左心室和右心室初始化和心脏 MRI 分割的全自动方法。其次,引入了一种深度监督网络来训练和分割心脏。第三,通过将图像强度模型与卷积神经网络(CNN)衍生的距离图相结合,改进了 3D-ASM 图像搜索过程,提高了心内膜和心外膜边缘定位。

结果

所提出的架构在 UK Biobank 的心脏 MRI 分割方面优于最新技术。三尖瓣和右心室顶点的 RV 地标检测误差统计分别为 4.17 毫米和 5.58 毫米。用于 LV(左心室)和 RV(右心室)轮廓分割的重叠度量、平均轮廓距离、Hausdorff 距离和心脏功能参数进行了计算。临床参数的 Bland-Altman 分析表明,我们的自动图像分析管道的结果与专家手动分析的结果吻合良好。

结论

我们的混合方案将深度学习和统计形状建模相结合,用于从心脏 MRI 数据集自动分割 LV/RV,是有效且稳健的,可以从人群成像中计算心脏功能指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验