Suppr超能文献

用于患者术后快速性心律失常分析的心房电图检查

Atrial Electrography for Postoperative Tachyarrhythmia Analysis in Patients.

作者信息

Peotter Ashley M, Brown Diane R, Kalscheur Matthew R, Von Bergen Nicholas H

机构信息

The University of Wisconsin School of Medicine and Public Heath, Madison WI, USA.

Division of Pediatric Intensive Care, Department of Pediatrics, University of Wisconsin School of Medicine and Public Heath, Madison WI, USA.

出版信息

J Innov Card Rhythm Manag. 2021 Oct 15;12(10):4726-4743. doi: 10.19102/icrm.2021.121003. eCollection 2021 Oct.

Abstract

The over 400,000 cardiac surgeries performed in the United States each year hold a risk for the postoperative complication of arrhythmias. Currently, bedside monitoring of surface electrocardiogram leads is used to interpret arrhythmias despite the evidence that atrial electrograms (AEGs) offer superior rhythm discrimination. This hesitancy to use the AEG may be due to a lack of training for practitioners in interpreting AEGs; therefore, our goal was to create an algorithm for the diagnosis of tachyarrhythmia using an AEG that can be utilized by any health care practitioner. Our algorithm classifies the most prevalent type of tachyarrhythmias following cardiac surgery. To allow rhythm identification, we categorized them based on their atrial to ventricular signal ratio, which is uniquely apparent on AEGs. Other considerations were given to rhythm regularity, consistency, P-wave axis, and rate. The algorithm includes the most common postoperative arrhythmias differentiated based on a unique branch-point approach, which walks through the steps in arrhythmia discrimination. Both rendered and collected AEGs are included as references for further understanding and interpretation of tachyarrhythmias. The utility of AEGs for rhythm discrimination post-cardiac surgery is established and recent technology can provide real-time and continuous monitoring; however, practitioner training may be inadequate. To bridge this divide, we created an algorithm so that existing atrial wires can be better used for an enhanced rhythm interpretation via AEGs.

摘要

美国每年进行的超过40万例心脏手术都存在术后心律失常并发症的风险。目前,尽管有证据表明心房电图(AEG)在心律失常鉴别方面更具优势,但仍通过床边监测体表心电图导联来解读心律失常。对使用AEG犹豫不决可能是由于从业者在解读AEG方面缺乏培训;因此,我们的目标是创建一种使用AEG诊断快速性心律失常的算法,任何医疗从业者都可以使用。我们的算法对心脏手术后最常见的快速性心律失常类型进行分类。为了能够识别心律,我们根据心房与心室信号比将它们分类,这在AEG上是独特明显的。还考虑了心律的规律性、一致性、P波轴和心率。该算法包括基于独特分支点方法区分的最常见术后心律失常,该方法贯穿心律失常鉴别的各个步骤。呈现的和收集的AEG都作为参考,以进一步理解和解释快速性心律失常。心脏手术后AEG在心律鉴别方面的实用性已得到确立,并且最近的技术可以提供实时和连续监测;然而,从业者培训可能不足。为了弥合这一差距,我们创建了一种算法,以便现有的心房导线能够更好地用于通过AEG增强心律解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dce/8545439/cb7ae221e702/icrm-12-4726-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验