Suppr超能文献

利用人工智能辅助放射学系统的合理性测试检测虚假相关性

Detecting Spurious Correlations With Sanity Tests for Artificial Intelligence Guided Radiology Systems.

作者信息

Mahmood Usman, Shrestha Robik, Bates David D B, Mannelli Lorenzo, Corrias Giuseppe, Erdi Yusuf Emre, Kanan Christopher

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, United States.

出版信息

Front Digit Health. 2021 Aug 3;3:671015. doi: 10.3389/fdgth.2021.671015. eCollection 2021.

Abstract

Artificial intelligence (AI) has been successful at solving numerous problems in machine perception. In radiology, AI systems are rapidly evolving and show progress in guiding treatment decisions, diagnosing, localizing disease on medical images, and improving radiologists' efficiency. A critical component to deploying AI in radiology is to gain confidence in a developed system's efficacy and safety. The current gold standard approach is to conduct an analytical validation of performance on a generalization dataset from one or more institutions, followed by a clinical validation study of the system's efficacy during deployment. Clinical validation studies are time-consuming, and best practices dictate limited re-use of analytical validation data, so it is ideal to know ahead of time if a system is likely to fail analytical or clinical validation. In this paper, we describe a series of sanity tests to identify when a system performs well on development data for the wrong reasons. We illustrate the sanity tests' value by designing a deep learning system to classify pancreatic cancer seen in computed tomography scans.

摘要

人工智能(AI)在解决机器感知中的众多问题方面已取得成功。在放射学领域,AI系统正在迅速发展,并在指导治疗决策、诊断、在医学图像上定位疾病以及提高放射科医生的效率方面取得进展。在放射学中部署AI的一个关键组成部分是要对已开发系统的有效性和安全性有信心。当前的金标准方法是在来自一个或多个机构的泛化数据集上对性能进行分析验证,然后在部署期间对系统的有效性进行临床验证研究。临床验证研究耗时,并且最佳实践规定分析验证数据的重复使用有限,因此,如果一个系统可能无法通过分析或临床验证,最好提前知道。在本文中,我们描述了一系列合理性测试,以识别系统在开发数据上表现良好但原因错误的情况。我们通过设计一个深度学习系统来对计算机断层扫描中看到的胰腺癌进行分类,来说明合理性测试的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b012/8521929/d0a14dd93baf/fdgth-03-671015-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验