School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
Department of Orthopedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China.
Adv Sci (Weinh). 2021 Dec;8(23):e2102035. doi: 10.1002/advs.202102035. Epub 2021 Oct 28.
The most critical factor determining the success of biodegradable bone implants is the host tissue response, which greatly depends on their degradation behaviors. Here, a new magnesium-based implant, namely magnesium-silicon-calcium (Mg-0.2Si-1.0Ca) alloy, that coordinates its biodegradation along with the bone regenerative process via a self-assembled, multilayered bone-implant interface is designed. At first, its rapid biocorrosion contributes to a burst release of Mg , leading to a pro-osteogenic immune microenvironment in bone. Meanwhile, with the simultaneous intervention of Ca and Si in the secondary phases of the new alloy, a hierarchical layered calcified matrix is rapidly formed at the degrading interface that favored the subsequent bone mineralization. In contrast, pure Mg or Mg-0.2Si alloy without the development of this interface at the beginning will unavoidably induce detrimental bone loss. Hence, it is believed this biomimicking interface justifies its bioadaptability in which it can modulate its degradation in vivo and accelerate bone mineralization.
决定可生物降解骨植入物成功的最关键因素是宿主组织反应,这在很大程度上取决于它们的降解行为。在这里,设计了一种新的基于镁的植入物,即镁-硅-钙(Mg-0.2Si-1.0Ca)合金,它通过自组装的、多层的骨-植入物界面协调其与骨再生过程的生物降解。首先,其快速的生物腐蚀性导致 Mg 的爆发释放,从而在骨骼中形成有利于成骨的免疫微环境。同时,随着新合金中 Ca 和 Si 的同时介入,在降解界面上迅速形成分层的钙化基质,有利于随后的骨矿化。相比之下,最初没有形成这种界面的纯镁或 Mg-0.2Si 合金不可避免地会导致有害的骨质流失。因此,人们相信这种仿生界面具有生物适应性,它可以调节体内的降解并加速骨矿化。