Suppr超能文献

[单细胞数据整合方法综述]

[A review on integration methods for single-cell data].

作者信息

Pan Duo, Li Huamei, Liu Hongde, Sun Xiao

机构信息

State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):1010-1017. doi: 10.7507/1001-5515.202104073.

Abstract

The emergence of single-cell sequencing technology enables people to observe cells with unprecedented precision. However, it is difficult to capture the information on all cells and genes in one single-cell RNA sequencing (scRNA-seq) experiment. Single-cell data of a single modality cannot explain cell state and system changes in detail. The integrative analysis of single-cell data aims to address these two types of problems. Integrating multiple scRNA-seq data can collect complete cell types and provide a powerful boost for the construction of cell atlases. Integrating single-cell multimodal data can be used to study the causal relationship and gene regulation mechanism across modalities. The development and application of data integration methods helps fully explore the richness and relevance of single-cell data and discover meaningful biological changes. Based on this, this article reviews the basic principles, methods and applications of multiple scRNA-seq data integration and single-cell multimodal data integration. Moreover, the advantages and disadvantages of existing methods are discussed. Finally, the future development is prospected.

摘要

单细胞测序技术的出现使人们能够以前所未有的精度观察细胞。然而,在一次单细胞RNA测序(scRNA-seq)实验中难以捕获所有细胞和基因的信息。单一模态的单细胞数据无法详细解释细胞状态和系统变化。单细胞数据的整合分析旨在解决这两类问题。整合多个scRNA-seq数据可以收集完整的细胞类型,并为细胞图谱的构建提供有力推动。整合单细胞多模态数据可用于研究跨模态的因果关系和基因调控机制。数据整合方法的发展与应用有助于充分探索单细胞数据的丰富性和相关性,并发现有意义的生物学变化。基于此,本文综述了多个scRNA-seq数据整合和单细胞多模态数据整合的基本原理、方法及应用。此外,还讨论了现有方法的优缺点。最后,对未来发展进行了展望。

相似文献

1
[A review on integration methods for single-cell data].[单细胞数据整合方法综述]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):1010-1017. doi: 10.7507/1001-5515.202104073.
9
Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.单细胞 RNA 测序分析:分步概述。
Methods Mol Biol. 2021;2284:343-365. doi: 10.1007/978-1-0716-1307-8_19.

引用本文的文献

1
[Advances in methods and applications of single-cell Hi-C data analysis].[单细胞Hi-C数据分析的方法与应用进展]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):1033-1039. doi: 10.7507/1001-5515.202303046.

本文引用的文献

2
Single cell transcriptomics comes of age.单细胞转录组学时代的到来。
Nat Commun. 2020 Aug 27;11(1):4307. doi: 10.1038/s41467-020-18158-5.
3
Single-cell landscape of immunological responses in patients with COVID-19.COVID-19 患者免疫反应的单细胞景观。
Nat Immunol. 2020 Sep;21(9):1107-1118. doi: 10.1038/s41590-020-0762-x. Epub 2020 Aug 12.
7
Method of the Year 2019: Single-cell multimodal omics.2019年度方法:单细胞多组学
Nat Methods. 2020 Jan;17(1):1. doi: 10.1038/s41592-019-0703-5.
8
Single-cell multimodal omics: the power of many.单细胞多组学:众多个体的力量。
Nat Methods. 2020 Jan;17(1):11-14. doi: 10.1038/s41592-019-0691-5.
9
Single-cell RNA sequencing of human kidney.单细胞 RNA 测序人类肾脏。
Sci Data. 2020 Jan 2;7(1):4. doi: 10.1038/s41597-019-0351-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验