Suppr超能文献

通过整合分析批量和单细胞 RNA 测序数据检测细胞类型特异性等位基因表达失衡。

Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data.

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America.

Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Genet. 2021 Mar 4;17(3):e1009080. doi: 10.1371/journal.pgen.1009080. eCollection 2021 Mar.

Abstract

Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provides a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.

摘要

等位基因表达失衡(AEI),通过对二倍体生物中一个基因的两个等位基因的相对表达来量化,可以帮助解释个体之间的表型变异。传统的方法使用批量 RNA 测序(RNA-seq)数据来检测 AEI,这种数据类型平均了跨细胞类型的基因表达的细胞间异质性。由于 AEI 的模式可能在不同的细胞类型中有所不同,因此以细胞类型特异性的方式研究 AEI 是可取的。虽然这可以通过单细胞 RNA 测序(scRNA-seq)来实现,但它需要在大量个体的单细胞中对全长转录本进行测序,这仍然是成本过高的。为了克服这一限制并利用大量现有的与疾病相关的批量组织 RNA-seq 数据,我们开发了 BSCET,它通过整合从可能来自外部数据集的一小部分 scRNA-seq 样本中推断出的细胞类型组成信息,使我们能够在批量 RNA-seq 数据中对细胞类型特异性 AEI 进行特征描述。通过对协变量效应进行建模,BSCET 还可以检测与临床因素相关的细胞类型特异性 AEI 的基因。通过广泛的基准评估,我们表明 BSCET 可以正确地检测到使用批量 RNA-seq 数据具有细胞类型特异性 AEI 和健康与患病样本之间差异 AEI 的基因。BSCET 还揭示了当 AEI 的方向在不同的细胞类型中相反时,在批量数据分析中被忽略的细胞类型特异性 AEI。我们进一步将 BSCET 应用于两个胰腺胰岛批量 RNA-seq 数据集,并检测到与 2 型糖尿病进展相关的表现出细胞类型特异性 AEI 的基因。由于批量 RNA-seq 数据易于获取,BSCET 提供了一种方便的工具,可以整合来自 scRNA-seq 数据的信息,以获得具有细胞类型分辨率的 AEI 的洞察力。这种分析的结果将推进我们对人类疾病中细胞类型贡献的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97e6/7963069/b343b96d7f75/pgen.1009080.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验