Janeeshma Edappayil, Puthur Jos T, Wróbel Jacek, Kalaji Hazem M
Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India.
Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434, Szczecin, Poland.
Ecotoxicology. 2022 Jan;31(1):92-113. doi: 10.1007/s10646-021-02492-5. Epub 2021 Oct 29.
The concentrations of cadmium (Cd) and zinc (Zn) in arable lands exceed the maximum permissible levels due to the excessive use of phosphorus fertilizers and fungicides by farmers. The increasing issues related to the application of agrochemicals have lead to the demand for the implementation of sustainable agricultural approaches. Association of arbuscular mycorrhizae with crop plants is an appropriate strategy due to the potential of these microorganisms to augment the metals tolerance of plants through the immobilization of Cd and Zn in an eco-friendly manner. In the present study, 45 d old Zea mays (var. CoHM6) plants inoculated with AM fungi (Claroideoglomus claroideum) were exposed to 1.95 g Zn Kg soil and 0.45 g Cd Kg soil. The major objective of this study was to determine the metabolic alterations in the leaves and roots of mycorrhizal and non-mycorrhizal plants exposed to CdCl and ZnSO. Both non AM and AM plants exhibited alterations in the quantity of primary and secondary metabolites on exposure to Zn and Cd toxicity. Moreover, Zn and Cd-induced accumulation of γ-sitosterol reduced the quantity of neophytadiene (a well-known terpenoid) and aided the production of 3-β-acetoxystigmasta-4,6,22-triene in maize leaves. Mycorrhization and heavy metal toxicity induced significant metabolic changes in the roots by producing 4,22-stigmastadiene-3-one, eicosane, 9,19-cyclolanost-24-en-3-ol, pentacosane, oxalic acid, heptadecyl hexyl ester, l-norvaline, and n-(2-methoxyethoxycarbonyl). In addition, the metal-induced variations in leaf and root lignin composition were characterized with the aid of the FTIR technique. Mycorrhization improved the tolerance of maize plants to Cd and Zn toxicity by stabilizing these metal ions in the soil and/or limiting their uptake into the plants, thus ensuring normal metabolic functions of their roots and shoots.
由于农民过度使用磷肥和杀菌剂,耕地中镉(Cd)和锌(Zn)的浓度超过了最大允许水平。与农用化学品应用相关的问题日益增多,导致人们对实施可持续农业方法的需求增加。丛枝菌根与作物植物的关联是一种合适的策略,因为这些微生物有潜力通过以生态友好的方式固定镉和锌来增强植物对金属的耐受性。在本研究中,接种了AM真菌(明球囊霉)的45日龄玉米(品种CoHM6)植株被暴露于每千克土壤含1.95克锌和0.45克镉的环境中。本研究的主要目的是确定暴露于氯化镉和硫酸锌的菌根植物和非菌根植物的叶片和根系中的代谢变化。在暴露于锌和镉毒性时,非AM植物和AM植物的初级和次级代谢产物数量均出现了变化。此外,锌和镉诱导的γ-谷甾醇积累减少了新植二烯(一种著名的萜类化合物)的数量,并促进了玉米叶片中3-β-乙酰氧基豆甾-4,6,22-三烯的产生。菌根形成和重金属毒性通过产生4,22-豆甾二烯-3-酮、二十烷、9,19-环羊毛甾-24-烯-3-醇、二十五烷、草酸、十七烷基己酯、L-正缬氨酸和N-(2-甲氧基乙氧基羰基)在根系中引起了显著的代谢变化。此外,借助傅里叶变换红外光谱(FTIR)技术对金属诱导的叶片和根系木质素组成变化进行了表征。菌根形成通过稳定土壤中的这些金属离子和/或限制它们被植物吸收,提高了玉米植株对镉和锌毒性的耐受性,从而确保其根和芽的正常代谢功能。